1,381 research outputs found
The optical system of the H.E.S.S. imaging atmospheric Cherenkov telescopes, Part II: mirror alignment and point spread function
Mirror facets of the H.E.S.S. imaging atmospheric Cherenkov telescopes are
aligned using stars imaged onto the closed lid of the PMT camera, viewed by a
CCD camera. The alignment procedure works reliably and includes the automatic
analysis of CCD images and control of the facet alignment actuators. On-axis,
80% of the reflected light is contained in a circle of less than 1 mrad
diameter. The spot widens with increasing angle to the telescope axis. In
accordance with simulations, the spot size has roughly doubled at an angle of
1.4 degr. from the axis. The expected variation of spot size with elevation due
to deformations of the support structure is visible, but is completely
non-critical over the usual working range. Overall, the optical quality of the
telescope exceeds the specifications.Comment: 23 pages, 13 figure
The systematic tunability of nanoparticle dimensions through the controlled loading of surface-deposited diblock copolymer micelles
The continuous tunability of iron oxide nanoparticle dimensions is demonstrated using the pH controlled loading of ferric nitrate from aqueous solution into polystyreneâblockâpolyacrylic acid reverse micelles deposited on a silicon substrate. Quasi-hexagonally ordered two-dimensional arrays of iron oxide nanoparticles with a systematic tunability of particle heights in the sub-10 nm regime and a constant periodicity are obtained and characterized with atomic force microscopy and x-ray photoelectron spectroscopy
Nanodispenser for attoliter volume deposition using atomic force microscopy probes modified by focused-ion-beam milling
In this letter, we describe the on-demand dispensing of single liquid droplets with volumes down to a few attoliters and submicrometric spacing. This dispensing is achieved using a standard atomic force microscope probe, with a 200 nm aperture at the tip apex, opened by focused ion beam milling. The inside of the tip is used as reservoir for the liquid. This maskless dispensing, realized in ambient environment, permits the direct creation of droplet arrays. Nanoparticles, suspended in the liquid, were organized on a surface
Immobilization of trypsin in organic and aqueous media for enzymatic peptide synthesis and hydrolysis reactions
Background: Immobilization of enzymes onto different carriers increases enzyme\u27s stability and reusability within biotechnological and pharmaceutical applications. However, some immobilization techniques are associated with loss of enzymatic specificity and/or activity. Possible reasons for this loss are mass transport limitations or structural changes. For this reason an immobilization method must be selected depending on immobilisate\u27s demands. In this work different immobilization media were compared towards the synthetic and hydrolytic activities of immobilized trypsin as model enzyme on magnetic micro-particles. Results: Porcine trypsin immobilization was carried out in organic and aqueous media with magnetic microparticles. The immobilization conditions in organic solvent were optimized for a peptide synthesis reaction. The highest carrier activity was achieved at 1 % of water (v/v) in dioxane. The resulting immobilizate could be used over ten cycles with activity retention of 90 % in peptide synthesis reaction in 80 % (v/v) ethanol and in hydrolysis reaction with activity retention of 87 % in buffered aqueous solution. Further, the optimized method was applied in peptide synthesis and hydrolysis reactions in comparison to an aqueous immobilization method varying the protein input. The dioxane immobilization method showed a higher activity coupling yield by factor 2 in peptide synthesis with a maximum activity coupling yield of 19.2 % compared to aqueous immobilization. The hydrolysis activity coupling yield displayed a maximum value of 20.4 % in dioxane immobilization method while the aqueous method achieved a maximum value of 38.5 %. Comparing the specific activity yields of the tested immobilization methods revealed maximum values of 5.2 % and 100 % in peptide synthesis and 33.3 % and 87.5 % in hydrolysis reaction for the dioxane and aqueous method, respectively. Conclusions: By immobilizing trypsin in dioxane, a beneficial effect on the synthetic trypsin activity resilience compared to aqueous immobilization medium was shown. The results indicate a substantial potential of the micro-aqueous organic protease immobilization method for preservation of enzymatic activity during enzyme coupling step. These results may be of substantial interest for enzymatic peptide synthesis reactions at mild conditions with high selectivity in industrial drug production. © 2015 Stolarow et al
Dual-flow-RootChip reveals local adaptations of roots towards environmental asymmetry at the physiological and genetic levels
Roots grow in highly dynamic and heterogeneous environments. Biological activity as well as uneven nutrient availability or localized stress factors result in diverse microenvironments. Plants adapt their root morphology in response to changing environmental conditions, yet it remains largely unknown to what extent developmental adaptations are based on systemic or cellâautonomous responses. We present the dualâflowâRootChip, a microfluidic platform for asymmetric perfusion of Arabidopsis roots to investigate rootâenvironment interactions under simulated environmental heterogeneity. Applications range from investigating physiology, root hair development and calcium signalling upon selective exposure to environmental stresses to tracing molecular uptake, performing selective drug treatments and localized inoculations with microbes. Using the dualâflowâRootChip, we revealed cellâautonomous adaption of root hair development under asymmetric phosphate (Pi) perfusion, with unexpected repression in root hair growth on the side exposed to low Pi and rapid tipâgrowth upregulation when Pi concentrations increased. The asymmetric root environment further resulted in an asymmetric gene expression of RSL4, a key transcriptional regulator of root hair growth. Our findings demonstrate that roots possess the capability to locally adapt to heterogeneous conditions in their environment at the physiological and transcriptional levels. Being able to generate asymmetric microenvironments for roots will help further elucidate decisionâmaking processes in rootâenvironment interactions
Block copolymer micelles as switchable templates for nanofabrication
Block copolymer inverse micelles from polystyrene-block-poly-2-vinylpyridine (PS-b-P2VP) deposited as monolayer films onto surfaces show responsive behavior and are reversibly switchable between two states of different topography and surface chemistry. The as-coated films are in the form of arrays of nanoscale bumps, which can be transformed into arrays of nanoscale holes by switching through exposure to methanol. The use of these micellar films to act as switchable etch masks for the structuring of the underlying material to form either pillars or holes depending on the switching state is demonstrated
Simultaneous X-Ray and TeV Gamma-Ray Observations of the TeV Blazar Markarian 421 during February and May 2000
In this paper we present the results of simultaneous observations of the TeV
blazar Markarian 421 (Mrk 421) at X-ray and TeV Gamma-ray energies with the
Rossi X-Ray Timing Explorer (RXTE) and the stereoscopic Cherenkov Telescope
system of the HEGRA (High Energy Gamma Ray Astronomy) experiment, respectively.
The source was monitored from February 2nd to February 16th and from May 3rd to
May 8th, 2000. We discuss in detail the temporal and spectral properties of the
source. Remarkably, the TeV observations of February 7th/8th showed
statistically significant evidence for substantial TeV flux variability on 30
min time scale. We show the results of modeling the data with a time dependent
homogeneous Synchrotron Self-Compton (SSC) model. The X-ray and TeV gamma-ray
emission strengths and energy spectra together with the rapid flux variability
strongly suggest that the emission volume is approaching the observer with a
Doppler factor of 50 or higher. The different flux variability time scales
observed at X-rays and TeV Gamma-rays indicate that a more detailed analysis
will require inhomogeneous models with several emission zones.Comment: Accepted for Publication in ApJ, 21 Pages, 5 Figure
- âŠ