382 research outputs found

    Hubungan Intensitas Polusi Isolator Jaringan Distribusi Di Sumatera Utara Dengan Jarak Lokasi Isolator Dari Pantai

    Full text link
    This paper reports the result of research about the pollution intensity of the insulator of 20 kV electrical distribution network in North Sumatera. It has investigated that the pollution intensity of the insulator of 20 kV electrical distribution network in North Sumatera is in low category. The pollution intensity of an insulator is decrease if the distance of mentioned insulator more far away from the seashore. If the distance of insulator from seashore about 40 km, the decreasing of pollution intensity reach to ± 50 % of pollution intensity of insulator that close to the seashore. The pollution intensity of insulator almost constant if the distance of insulator from seashore is between 40 km to 80 km. It means that the salt contained on air which is blow from the sea is not influence on insulator pollution if the distance of mentioned insulator from seashore more than 40 k

    Ultratrace-level determination of glyphosate, aminomethylphosphonic acid and glufosinate in natural waters by solid-phase extraction followed by liquid chromatography-tandem mass spectrometry: performance tuning of derivatization, enrichment and detection

    Get PDF
    A sensitive and robust analytical method for the quantification of glyphosate, aminomethylphosphonic acid (AMPA) and glufosinate in natural water has been developed on the basis of a derivatization with 9-fluorenylmethylchloroformate (FMOC-Cl), solid-phase extraction (SPE) and liquid chromatography followed by electrospray tandem mass spectrometry (LC-ESI-MS/MS). In order to maximize sensitivity, the derivatization was optimized regarding organic solvent content, amount of FMOC-Cl and reaction time. At an acetonitrile content of 10% a derivatization yield of 100% was reached within two hours in groundwater and surface water samples. After a twofold dilution the low acetonitrile content allowed solid-phase extraction of a sample of originally 80mL over 200mg Strata-X cartridges. In order to decrease the load of the LC column and mass spectrometer with derivatization by-products (e.g., 9-fluorenylmethanol FMOC-OH), a rinsing step was performed for the SPE cartridge with dichloromethane. Acidification of the sample and addition of EDTA was used to minimize complexation of the target compounds with metal ions in environmental samples. Due to the large sample volume and the complete FMOC-OH removal, limits of quantification of 0.7ng/L, 0.8ng/L and 2.3ng/L were achieved in surface water for glyphosate, AMPA and glufosinate, respectively. The limits of detection were as low as 0.2ng/L, 0.2ng/L and 0.6ng/L for glyphosate, AMPA and glufosinate, respectively. Surface water and ground water samples spiked at 2ng/L showed recoveries of 91-107%. Figure LC-MS/MS chromatogram of a water sample from a remote alpine region spiked at 1ng/

    LC-high resolution MS in environmental analysis: from target screening to the identification of unknowns

    Get PDF
    This article provides an overview of the state-of-the-art and future trends of the application of LC-high resolution mass spectrometry to the environmental analysis of polar micropollutants. Highly resolved and accurate hybrid tandem mass spectrometry such as quadrupole/time-of-flight and linear ion trap/orbitrap technology allows for a more reliable target analysis with reference standards, a screening for suspected analytes without reference standards, and a screening for unknowns. A reliable identification requires both high resolving power and high mass spectral accuracy to increase selectivity against the matrix background and for a correct molecular formula assignment to unknown compounds. For the identification and structure elucidation of unknown compounds within a reasonable time frame and with a reasonable soundness, advanced automated software solutions as well as improved prediction systems for theoretical fragmentation patterns, retention times, and ionization behavior are needed. Figure a Plot of nominal m/z vs. mass defect of all matrix ions observed in two retention time (Rt) windows of a full-scan HRMS chromatogram at a resolution of 60,000 from a background soil extract. b Extracted ion chromatograms of the herbicide linuron spiked into a background soil extract and of a suspected transformation product of lenacil in a soil extract, both showing a different mass defec

    Large-scale assessment of organic contaminant emissions from chemical and pharmaceutical manufacturing into Swiss surface waters

    Full text link
    This study presents a nation-wide assessment of the influence of chemical and pharmaceutical manufacturing (CPM) wastewaters on synthetic organic contaminant (SOC) emissions to Swiss surface waters. Geographic Information System (GIS) based analysis of the presence of CPM in wastewater treatment plant (WWTP) catchments revealed wide distribution of this industrial sector across Switzerland, suggesting that one-third of the 718 Swiss WWTPs may be influenced by CPM wastewaters. To reflect the diversity of this type of wastewaters, we investigated the effluents of 11 WWTPs of diverse sizes and technologies, which treated 0-100% wastewater from a variety of CPM activities. In an extensive sampling campaign, we collected temporally high resolved (i.e., daily) samples for 2-3 months to capture the dynamics of CPM discharges. The > 850 samples were then measured with liquid chromatography high-resolution mass spectrometry (LC-HRMS). Non-target characterization of the LC-HRMS time series datasets revealed that CPM wastewaters left a highly variable and site-specific signature in the effluents of the WWTPs. Particularly, compared to WWTPs with purely domestic input, a larger variety of substances (up to 15 times more compounds) with higher maximum concentrations (1-2 orders of magnitude) and more uncommon substances were found in CPM-influenced effluents. Moreover, in the latter, highly fluctuating discharges often contributed to a substantial fraction of the overall emissions. The largely varying characteristics of CPM discharges between different facilities were primarily related to the type of activities at the industries (i.e., production versus processing of chemicals) as well as to the pre-treatment and storage of CPM wastewaters. Eventually, for one WWTP, LC-HRMS time series were correlated with ecotoxicity time series obtained from bioassays and major toxic components could be identified. Overall, in view of their potential relevance to water quality, a strong focus on SOC discharges from CPM is essential, including the design of situation-specific monitoring, as well as risk assessment and mitigation strategies that consider the variability of industrial emissions. Keywords: Chemical and pharmaceutical industry; High-resolution mass spectrometry; Industrial wastewater; Micropollutants; Non-target analysis; Temporal data

    Targeting aquatic microcontaminants for monitoring: exposure categorization and application to the Swiss situation

    Get PDF
    Background, aim, and scope: Aquatic microcontaminants (MCs) comprise diverse chemical classes, such as pesticides, biocides, pharmaceuticals, consumer products, and industrial chemicals. For water pollution control and the evaluation of water protection measures, it is crucial to screen for MCs. However, the selection and prioritization of which MCs to screen for is rather difficult and complex. Existing methods usually are strongly limited because of a lack of screening regulations or unavailability of required data. Method and models: Here, we present a simple exposure-based methodology that provides a systematic overview of a broad range of MCs according to their potential to occur in the water phase of surface waters. The method requires input of publicly available data only. Missing data are estimated with quantitative structure-property relationships. The presented substance categorization methodology is based on the chemicals' distribution behavior between different environmental media, degradation data, and input dynamics. Results: Seven different exposure categories are distinguished based on different compound properties and input dynamics. Ranking the defined exposure categories based on a chemical's potential to occur in the water phase of surface waters, exposure categories I and II contain chemicals with a very high potential, categories III and IV contain chemicals with a high potential, and categories V and VI contain chemicals with a moderate to low potential. Chemicals in category VII are not evaluated because of a lack of data. We illustrate and evaluate the methodology on the example of MCs in Swiss surface waters. Furthermore, a categorized list containing potentially water-relevant chemicals is provided. Discussion: Chemicals of categories I and III continuously enter surface waters and are thus likely to show relatively steady concentrations. Therefore, they are best suited for water monitoring programs requiring a relatively low sampling effort. Chemicals in categories II and IV have complex input dynamics. They are consequently more difficult to monitor. However, they should be considered if an overall picture is needed that includes contaminants from diffuse sources. Conclusions: The presented methodology supports compound selection for (a) water quality guidance, (b) monitoring programs, and (c) further research on the chemical's ecotoxicology. The results from the developed categorization procedure are supported by data on consumption and observed concentrations in Swiss surface waters. The presented methodology is a tool to preselect potential hazardous substances based on exposure-based criteria for policy guidance and monitoring programs and a first important step for a detailed risk assessment for potential microcontaminant

    Suspect and nontarget screening approaches to identify organic contaminant records in lake sediments

    Get PDF
    Sediment cores provide a valuable record of historical contamination, but so far, new analytical techniques such as high-resolution mass spectrometry (HRMS) have not yet been applied to extend target screening to the detection of unknown contaminants for this complex matrix. Here, a combination of target, suspect, and nontarget screening using liquid chromatography (LC)-HRMS/MS was performed on extracts from sediment cores obtained from Lake Greifensee and Lake Lugano located in the north and south of Switzerland, respectively. A suspect list was compiled from consumption data and refined using the expected method coverage and a combination of automated and manual filters on the resulting measured data. Nontarget identification efforts were focused on masses with Cl and Br isotope information available that exhibited mass defects outside the sample matrix, to reduce the effect of analytical interferences. In silico methods combining the software MOLGEN-MS/MS and MetFrag were used for direct elucidation, with additional consideration of retention time/partitioning information and the number of references for a given substance. The combination of all available information resulted in the successful identification of three suspect (chlorophene, flufenamic acid, lufenuron) and two nontarget compounds (hexachlorophene, flucofuron), confirmed with reference standards, as well as the tentative identification of two chlorophene congeners (dichlorophene, bromochlorophene) that exhibited similar time trends through the sediment cores. This study demonstrates that complementary application of target, suspect, and nontarget screening can deliver valuable information despite the matrix complexity and provide records of historical contamination in two Swiss lakes with previously unreported compounds

    Abnormal brain tryptophan metabolism and clinical correlates in Tourette syndrome

    Full text link
    Symptoms in Tourette syndrome (TS) are likely related to abnormalities involving multiple neurotransmitter systems in striatal-thalamo-cortical circuitry. Although prior studies have found abnormal levels of tryptophan, serotonin, and their metabolites in blood, cerebrospinal fluid and brain tissue of TS patients, understanding of focal brain disturbances and their relationship to clinical phenotype remains poor. We used Α-[ 11 C]methyl- L -tryptophan (AMT) positron emission tomography (PET) to assess global and focal brain abnormalities of tryptophan metabolism and their relationship to behavioral phenotype in 26 children with TS and nine controls. Group comparisons on regional cortical and subcortical AMT uptake revealed decreased AMT uptake in bilateral dorsolateral prefrontal cortical and bilaterally increased uptake in the thalamus ( P = 0.001) in TS children. The ratio of AMT uptake in subcortical structures to dorsolateral prefrontal cortex was significantly increased bilaterally ( P < 0.01) in TS patients also. Behaviorally defined subgroups within the TS sample revealed differences in the pattern of AMT uptake in the fronto-striatal-thalamic circuit. This study demonstrates cortical and subcortical abnormalities of tryptophan metabolism in TS and provides neuroimaging evidence for a role of serotonergic mechanisms in the pathophysiology of TS. © 2007 Movement Disorder SocietyPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/57523/1/21712_ftp.pd

    Quantum gate in the decoherence-free subspace of trapped ion qubits

    Full text link
    We propose a geometric phase gate in a decoherence-free subspace with trapped ions. The quantum information is encoded in the Zeeman sublevels of the ground-state and two physical qubits to make up one logical qubit with ultra long coherence time. Single- and two-qubit operations together with the transport and splitting of linear ion crystals allow for a robust and decoherence-free scalable quantum processor. For the ease of the phase gate realization we employ one Raman laser field on four ions simultaneously, i.e. no tight focus for addressing. The decoherence-free subspace is left neither during gate operations nor during the transport of quantum information.Comment: 6 pages, 6 figure

    Finite temperature formalism for nonabelian gauge theories in the physical phase space

    Get PDF
    We establish a new framework of finite temperature field theory for Yang-Mills theories in the physical phase space eliminating all unphysical degrees of freedoms. Relating our method to the imaginary time formalism of James and Landshoff in temporal axial gauge, we calculate the two-loop pressure and provide a systematic and unique method to construct the additional vertices encountered in their approach.Comment: 18 pages, 5 postscript figures, uses revtex, eps
    • …
    corecore