9,846 research outputs found
Fragmentation of spherical radioactive heavy nuclei as a novel probe of transient effects in fission
Peripheral collisions with radioactive heavy-ion beams at relativistic
energies are discussed as an innovative approach for probing the transient
regime experienced by fissile systems evolving towards quasi-equilibrium. A
dedicated experiment using the advanced technical installations of GSI,
Darmstadt, permitted to realize ideal conditions for the investigation of
relaxation effects in the meta-stable well. Combined with a highly sensitive
experimental signature, it provides a measure of the transient effects with
respect to the flux over the fission barrier. Within a two-step reaction
process, 45 proton-rich unstable spherical isotopes produced by
projectile-fragmentation of a stable 238U beam have been used as secondary
projectiles. The fragmentation of the radioactive projectiles on lead results
in nearly spherical compound nuclei which span a wide range in excitation
energy and fissility. The decay of these excited systems by fission is studied
with a dedicated set-up which permits the detection of both fission products in
coincidence and the determination of their atomic numbers with high resolution.
The width of the fission-fragment nuclear charge distribution is shown to be
specifically sensitive to pre-saddle transient effects and is used to establish
a clock for the passage of the saddle point. The comparison of the experimental
results with model calculations points to a fission delay of (3.3+/-0.7).10-21s
for initially spherical compound nuclei, independent of excitation energy and
fissility. This value suggests a nuclear dissipation strength at small
deformation of (4.5+/-0.5).1021s-1. The very specific combination of the
physics and technical equipment exploited in this work sheds light on previous
controversial conclusions.Comment: 38 pages, 15 figure
Evidence of early multi-strange hadron freeze-out in high energy nuclear collisions
Recently reported transverse momentum distributions of strange hadrons
produced in Pb(158AGeV) on Pb collisions and corresponding results from the
relativistic quantum molecular dynamics (RQMD) approach are examined. We argue
that the experimental observations favor a scenario in which multi-strange
hadrons are formed and decouple from the system rather early at large energy
densities (around 1 GeV/fm). The systematics of the strange and non-strange
particle spectra indicate that the observed transverse flow develops mainly in
the late hadronic stages of these reactions.Comment: 4 pages, 4 figure
The Ground State Energy of Heavy Atoms According to Brown and Ravenhall: Absence of Relativistic Effects in Leading Order
It is shown that the ground state energy of heavy atoms is, to leading order,
given by the non-relativistic Thomas-Fermi energy. The proof is based on the
relativistic Hamiltonian of Brown and Ravenhall which is derived from quantum
electrodynamics yielding energy levels correctly up to order Ry
Game-based e-learning applications of e-tester
Adaptive E-Learning systems may be a supportive solution for a wide range of learning applications. In order to complement common learning paradigms in computer-based education the digital game-based learning paradigm is an interesting alternative, through which we can increase motivation, intrigue learners for a new or a previously boring subject, and provide another, more relaxing environment for self-assessment and testing. Despite of these advantages, one main shortcoming is that the creation of game stories and curriculum-relevant game content is an enormous workload for teachers and learning content providers. In order to reduce the learning game creation effort, we propose an enhanced digital game-based learning approach by applying a flexible game shell in combination with auto-generated questions based on the course content and automatic assessment of natural language answers. On the basis of requirements within the AdeLE research project and application scenarios, our development approach as well as the first prototype implementation are highlighted. First experiences and tests based on the prototype implementation are promising
Relativistic Kinetic Equations for Electromagnetic, Scalar and Pseudoscalar Interactions
We derive the kinetic equations for both the covariant and equal-time Wigner
functions of Dirac particles with electromagnetic, scalar and pseudoscalar
interactions. We emphasize the constraint equations for the spinor components
in the equal-time formulation.Comment: 12 pages, no figures, revte
Elliptic and triangular flow of identified particles at ALICE
We report on the first measurements of elliptic and triangular flow for
charged pions, kaons and anti-protons in lead-lead collisions at 2.76 TeV
measured with the ALICE detector at the LHC. We compare the observed mass
splitting of differential elliptic flow at LHC energies to RHIC measurements at
lower energies and theory predictions. We test the quark coalescence picture
with the quark number scaling of elliptic and triangular flow.Comment: 4 pages, 5 figures, Quark Matter 2011 conference proceeding
X-ray and Radio Monitoring of GX 339-4 and Cyg X-1
Previous work by Motch et al. (1985) suggested that in the low/hard state of
GX339-4, the soft X-ray power-law extrapolated backward in energy agrees with
the IR flux level. Corbel and Fender (2002) later showed that the typical hard
state radio power-law extrapolated forward in energy meets the backward
extrapolated X-ray power-law at an IR spectral break, which was explicitly
observed twice in GX339-4. This has been cited as further evidence that jet
synchrotron radiation might make a significant contribution to the observed
X-rays in the hard state. We explore this hypothesis with a series of
simultaneous radio/X-ray hard state observations of GX339-4. We fit these
spectra with a simple, but remarkably successful, doubly broken power-law model
that indeed requires a spectral break in the IR. For most of these
observations, the break position as a function of X-ray flux agrees with the
jet model predictions. We then examine the radio flux/X-ray flux correlation in
Cyg X-1 through the use of 15 GHz radio data, obtained with the Ryle radio
telescope, and Rossi X-ray Timing Explorer data, from the All Sky Monitor and
pointed observations. We find evidence of `parallel tracks' in the radio/X-ray
correlation which are associated with `failed transitions' to, or the beginning
of a transition to, the soft state. We also find that for Cyg X-1 the radio
flux is more fundamentally correlated with the hard, rather than the soft,
X-ray flux.Comment: To Appear in the Proceedings of "From X-ray Binaries to Quasars:
Black Hole Accretion on All Mass Scales" (Amsterdam, July 2004). Eds. T
Maccarone, R. Fender, L. H
The Enigmatic HH 255
To gain insight into the nature of the peculiar Herbig-Haro object HH 255
(also called Burnham's nebula), we use previously published observations to
derive information about the emission line fluxes as a function of position
within HH 255 and compare them with the well-studied, and relatively
well-behaved bow shock HH 1. There are some qualitative similarities in the
H and [O III] 5007 lines in both objects. However, in contrast to the
expectation of the standard bow shock model, the fluxes of the [O I] 6300, [S
II] 6731, and [N II] 6583 lines are essentially constant along the axis of the
flow, while the electron density decreases, over a large distance within HH
255.
We also explore the possibility that HH 255 represents the emission behind a
standing or quasi-stationary shock. The shock faces upwind, and we suggest,
using theoretical arguments, that it may be associated with the collimation of
the southern outflow from T Tauri. Using a simplified magnetohydrodynamic
simulation to illustrate the basic concept, we demonstrate that the existence
of such a shock at the north edge of HH 255 could indeed explain its unusual
kinematic and ionization properties. Whether or not such a shock can explain
the detailed emission line stratification remains an open question.Comment: Accepted by PASP, 12 pages including 8 figure
First Results from Pb+Pb collisions at the LHC
At the end of 2010, the CERN Large Hadron Collider started operation with
heavy ion beams, colliding lead nuclei at a centre-of-mass energy of 2.76
TeV/nucleon and opening a new era in ultra-relativistic heavy ion physics at
energies exceeding previous accelerators by more than an order of magnitude.
This review summarizes the results from the first year of heavy ion physics at
LHC obtained by the three experiments participating in the heavy ion program,
ALICE, ATLAS, and CMS.Comment: To appear in Annual Review of Nuclear and Particle Scienc
QCD corrections to the t-->H+b decay within the minimal supersymmetric standard model
I present the contribution of gluinos and scalar quarks to the decay rate of
the top quark into a charged Higgs boson and a bottom quark within the minimal
supersymmetric standard model, including the mixing of the scalar partners of
the left- and right-handed top quark. I show that for certain values of the
supersymmetric parameters the standard QCD loop corrections to this decay mode
are diminished or enhanced by several 10 per cent. I show that not only a small
value of 3 GeV for the gluino mass (small mass window) but also much larger
values of several hundreds of GeV's have a non-neglible effect on this decay
rate, against general belief. Last but not least, if the ratio of the vacuum
expectation values of the Higgs bosons are taken in the limit of I
obtain a drastic enhancement due to a \ dependence in the couplings.Comment: UQAM-PHE-94/01, 6 pages, plain tex, 4 figures not included, available
under request via mail or fa
- …