270 research outputs found
The summer aerosol in the central Arctic 1991â2008: did it change or not?
In the course of global warming dramatic changes are taking place in the Arctic and boreal environments. However, physical aerosol data in from the central summer Arctic taken over the course of 18 yr from 1991 to 2008 do not show systematic year-to-year changes, albeit substantial interannual variations. Besides the limited extent of the data several causes may be responsible for these findings. The processes controlling concentrations and particle size distribution of the aerosol over the central Arctic perennial pack ice area, north of 80°, may not have changed substantially during this time. Environmental changes are still mainly effective in the marginal ice zone, the ice-free waters and continental rims and have not propagated significantly into the central Arctic yet where they could affect the local aerosol and its sources. The analysis of meteorological conditions of the four expedition summers reveal substantial variations which we see as main causes of the measured variations in aerosol parameters. With combined lognormal fits of the hourly number size distributions of the four expeditions representative mode parameters for the summer aerosol in the central Arctic have been calculated. The combined aerosol statistics discussed in the present paper provide comprehensive physical data on the summer aerosol in the central Arctic. These data are the only surface aerosol information from this region
Recommended from our members
The summer aerosol in the central Arctic 1991-2008: Did it change or not?
In the course of global warming dramatic changes are taking place in the Arctic and boreal environments. However, physical aerosol data in from the central summer Arctic taken over the course of 18 yr from 1991 to 2008 do not show systematic year-to-year changes, albeit substantial interannual variations. Besides the limited extent of the data several causes may be responsible for these findings. The processes controlling concentrations and particle size distribution of the aerosol over the central Arctic perennial pack ice area, north of 80°, may not have changed substantially during this time. Environmental changes are still mainly effective in the marginal ice zone, the ice-free waters and continental rims and have not propagated significantly into the central Arctic yet where they could affect the local aerosol and its sources. The analysis of meteorological conditions of the four expedition summers reveal substantial variations which we see as main causes of the measured variations in aerosol parameters. With combined lognormal fits of the hourly number size distributions of the four expeditions representative mode parameters for the summer aerosol in the central Arctic have been calculated. The combined aerosol statistics discussed in the present paper provide comprehensive physical data on the summer aerosol in the central Arctic. These data are the only surface aerosol information from this region
Out of Africa: High aerosol concentrations in the upper troposphere over Africa
International audienceIn the year 2000, six flights (three southbound and three northbound) of the CARIBIC project were conducted between Germany and two destinations in the southern hemisphere (Windhoek, Namibia and Cape Town, South Africa). In the present report, results on particle number concentrations are discussed in three size ranges (>4 nm, >12 nm, and >18 nm particle diameter) during the unique transequatorial Africa flights. The flights covered a total of about 80 h in May, July, and December. Thus, no claim can be made for long-term representativeness of the aerosol data. Nevertheless, they are the first upper systematic tropospheric transequatorial aerosol profiles over Africa. The average aerosol results show a broad maximum, roughly symmetrical to the equator, which compares well in latitudinal extent to a maximum of CO concentrations measured on the same flights. This export of continental surface aerosol to the upper troposphere will be dispersed on a global scale both with the easterly flow near the equator and with the westerlies in the adjacent subtropical regions. There was strong evidence of recent new particle formation before aerosol arrival at flight level, in particular during the time periods between 9:00 and 13:00 local time over Africa. Direct and indirect climate effects of the respective particulate matter remain to be investigated by future flights with the ongoing extension of the CARIBIC payload towards size-resolved measurements above 100 nm particle diameter. At the same time global chemical transport models and aerosol dynamics models need to be extended to be able to reproduce the CARIBIC findings over Africa
Recommended from our members
Out of Africa: High aerosol concentrations in the upper troposphere over Africa
In the year 2000, six flights (three southbound and three northbound) of the CARIBIC project were conducted between Germany and two destinations in the southern hemisphere (Windhoek, Namibia and Cape Town, South Africa). In the present report, results on particle number concentrations are discussed in three size ranges (>4 nm, >12 nm, and >18 nm particle diameter) during the unique transequatorial Africa flights. The flights covered a total of about 80 h in May, July, and December. Thus, no claim can be made for long-term representativeness of the aerosol data. Nevertheless, they are the first upper systematic tropospheric transequatorial aerosol profiles over Africa. The average aerosol results show a broad maximum, roughly symmetrical to the equator, which compares well in latitudinal extent to a maximum of CO concentrations measured on the same flights. This export of continental surface aerosol to the upper troposphere will be dispersed on a global scale both with the easterly flow near the equator and with the westerlies in the adjacent subtropical regions. There was strong evidence of recent new particle formation before aerosol arrival at flight level, in particular during the time periods between 9:00 and 13:00 local time over Africa. Direct and indirect climate effects of the respective particulate matter remain to be investigated by future flights with the ongoing extension of the CARIBIC payload towards size-resolved measurements above 100 nm particle diameter. At the same time global chemical transport models and aerosol dynamics models need to be extended to be able to reproduce the CARIBIC findings over Africa
Recommended from our members
Potential source regions and processes of aerosol in the summer Arctic
Sub-micrometer particle size distributions measured during four summer cruises of the Swedish icebreaker Oden 1991, 1996, 2001, and 2008 were combined with dimethyl sulfide gas data, back trajectories, and daily maps of pack ice cover in order to investigate source areas and aerosol formation processes of the boundary layer aerosol in the central Arctic. With a clustering algorithm, potential aerosol source areas were explored. Clustering of particle size distributions together with back trajectories delineated five potential source regions and three different aerosol types that covered most of the Arctic Basin: marine, newly formed and aged particles over the pack ice. Most of the pack ice area with < 15% of open water under the trajectories exhibited the aged aerosol type with only one major mode around 40 nm. For newly formed particles to occur, two conditions had to be fulfilled over the pack ice: the air had spent 10 days while traveling over ever more contiguous ice and had traveled over less than 30% open water during the last 5 days. Additionally, the air had experienced more open water (at least twice as much as in the cases of aged aerosol) during the last 4 days before arrival in heavy ice conditions at Oden. Thus we hypothesize that these two conditions were essential factors for the formation of ultrafine particles over the central Arctic pack ice. In a comparison the Oden data with summer size distribution data from Alert, Nunavut, and Mt. Zeppelin, Spitsbergen, we confirmed the Oden findings with respect to particle sources over the central Arctic. Future more frequent broken-ice or open water patches in summer will spur biological activity in surface water promoting the formation of biological particles. Thereby low clouds and fogs and subsequently the surface energy balance and ice melt may be affected
Recommended from our members
Size distribution and chemical composition of marine aerosols: A compilation and review
Some 30 years of physical and chemical marine aerosol data are reviewed to derive global-size distribution parameters and inorganic particle composition on a coarse 15°Ă15° grid. There are large gaps in geographical and seasonal coverage and chemical and physical aerosol characterisation. About 28% of the grid cells contain physical data while there are compositional data in some 60% of the cells. The size distribution data were parametrized in terms of 2 submicrometer log-normal distributions. The sparseness of the data did not allow zonal differentiation of the distributions. By segregating the chemical data according to the major aerosol sources, sea salt, dimethylsulfide, crustal material, combustion processes and other anthropogenic sources, much information on mass concentrations and contribution of natural and anthropogenic sources to the marine aerosol can be gleaned from the data base. There are significant meridional differences in the contributions of the different sources to the marine aerosol. Very clearly, we see though that the global marine surface atmosphere is polluted by anthropogenic sulfur. Only in the case of sulfur components did the coverage allow the presentation of very coarse seasonal distributions which reflect the spring blooms in the appropriate parts of the oceans. As an example of the potential value in comparing the marine aerosol data base to chemical transport models, global seasonal meridional MSA distributions were compared to modelled MSA distributions. The general good agreement in mass concentrations is encouraging while some latitudinal discrepancies warrant further investigations covering other aerosol components such as black carbon and metals
Recommended from our members
Aerosol number size distributions from 3 to 500 nm diameter in the arctic marine boundary layer during summer and autumn
Aerosol physics measurements made onboard the Swedish icebreaker Oden in the late Summer and early Autumn of 1991 during the International Arctic Ocean Expedition (IAOE-91) have provided the first data on the size distribution of particles in the Arctic marine boundary layer (MBL) that cover both the number and mass modes of the size range from 3 to 500 nm diameter. These measurements were made in conjunction with atmospheric gas and condensed phase chemistry measurements in an effort to understand a part of the ocean-atmosphere sulfur cycle. Analysis of the particle physics data showed that there were three distinct number modes in the submicrometric aerosol in the Arctic MBL. These modes had geometric mean diameters of around 170 nm. 45 nm and 14 nm referred to as accumulation, Aitken and ultrafine modes, respectively. There were clear minima in number concentrations between the modes that appeared at 20 to 30 nm and at 80 to 100 nm. The total number concentration was most frequently between 30 and 60 particles cm-3 with a mean value of around 100 particles cm-3, but the hourly average concentration varied over two to three orders of magnitude during the 70 days of the expedition. On average, the highest concentration was in the accumulation mode that contained about 45% of the total number, while the Aitken mode contained about 40%. The greatest variability was in the ultrafine mode concentration which is indicative of active, earby sources (nucleation from the gas phase) and sinks; the Aitken and accumulation mode concentrations were much less variable. The ultrafine mode was observed about two thirds of the time and was dominant 10% of the time. A detailed description and statistical analysis of the modal aerosol parameters is presented here
Recommended from our members
Cloud phase identification of Arctic boundary-layer clouds from airborne spectral reflection measurements: Test of three approaches
Arctic boundary-layer clouds were investigated with remote sensing and in situ instruments during the Arctic Study of Tropospheric Aerosol, Clouds and Radiation (ASTAR) campaign in March and April 2007. The clouds formed in a cold air outbreak over the open Greenland Sea. Beside the predominant mixed-phase clouds pure liquid water and ice clouds were observed. Utilizing measurements of solar radiation reflected by the clouds three methods to retrieve the thermodynamic phase of the cloud are introduced and compared. Two ice indices IS and IP were obtained by analyzing the spectral pattern of the cloud top reflectance in the near infrared (1500â1800 nm wavelength) spectral range which is characterized by ice and water absorption. While IS analyzes the spectral slope of the reflectance in this wavelength range, IS utilizes a principle component analysis (PCA) of the spectral reflectance. A third ice index IA is based on the different side scattering of spherical liquid water particles and nonspherical ice crystals which was recorded in simultaneous measurements of spectral cloud albedo and reflectance.
Radiative transfer simulations show that IS, IP and IA range between 5 to 80, 0 to 8 and 1 to 1.25 respectively with lowest values indicating pure liquid water clouds and highest values pure ice clouds. The spectral slope ice index IS and the PCA ice index IP are found to be strongly sensitive to the effective diameter of the ice crystals present in the cloud. Therefore, the identification of mixed-phase clouds requires a priori knowledge of the ice crystal dimension. The reflectance-albedo ice index IA is mainly dominated by the uppermost cloud layer (Ï<1.5). Therefore, typical boundary-layer mixed-phase clouds with a liquid cloud top layer will be identified as pure liquid water clouds. All three methods were applied to measurements above a cloud field observed during ASTAR 2007. The comparison with independent in situ microphysical measurements shows the ability of the three approaches to identify the ice phase in Arctic boundary-layer clouds
Aerosol particle number size distributions and particulate light absorption at the ZOTTO tall tower (Siberia), 2006â2009
This paper analyses aerosol particle number size distributions, particulate absorption at 570 nm wavelength and carbon monoxide (CO) measured between September 2006 and January 2010 at heights of 50 and 300 m at the Zotino Tall Tower Facility (ZOTTO) in Siberia (60.8° N; 89.35° E). Average number, surface and volume concentrations are broadly comparable to former studies covering shorter observation periods. Fits of multiple lognormal distributions yielded three maxima in probability distribution of geometric mean diameters in the Aitken and accumulation size range and a possible secondary maximum in the nucleation size range below 25 nm. The seasonal cycle of particulate absorption shows maximum concentrations in high winter (December) and minimum concentrations in mid-summer (July). The 90th percentile, however, indicates a secondary maximum in July/August that is likely related to forest fires. The strongly combustion derived CO shows a single winter maximum and a late summer minimum, albeit with a considerably smaller seasonal swing than the particle data due to its longer atmospheric lifetime. Total volume and even more so total number show a more complex seasonal variation with maxima in winter, spring, and summer. A cluster analysis of back trajectories and vertical profiles of the pseudo-potential temperature yielded ten clusters with three levels of particle number concentration: Low concentrations in Arctic air masses (400â500 cmâ3), mid-level concentrations for zonally advected air masses from westerly directions between 55° and 65° N (600â800 cmâ3), and high concentrations for air masses advected from the belt of industrial and population centers in Siberia and Kazakhstan (1200 cmâ3). The observational data is representative for large parts of the troposphere over Siberia and might be particularly useful for the validation of global aerosol transport models
Recommended from our members
Overview of the atmospheric research program during the International Arctic Ocean Expedition of 1991 (IAOE-91) and its scientific results
The broad aim of the Atmospheric program of the International Arctic Ocean Expedition (IAOE-91) was to test the hypothesis that marine biogenically produced dimethyl sulfide (DMS) gas can exert a significant global climatic control. The hypothesis states that DMS is transferred to the atmosphere and is oxidised to form airborne particles. Some of these grow large enough to act as cloud condensation nuclei (CCN) which help determine cloud droplet concentration. The latter has a strong influence on cloud albedo and hence on the radiation balance of the area affected. In summer, the central Arctic is a specially favourable region for studying the natural sulfur cycle in that the open waters surrounding the pack ice are the only significant sources of DMS and there are almost no anthropogenic particle sources. Concentrations of seawater and atmospheric DMS decreased at about the same rate during the period of measurements, (1 August to 6 October, latitudes 75°N to 90°N) spanning about three orders of magnitude. Methane sulfonate and nonsea salt sulfate in the submicrometer particles, which may be derived from atmospheric DMS, also decreased similarly, suggesting that the first part of the hypothesis under test was true. Influences on cloud droplet concentration and radiation balance could not be measured. Size-resolved aerosol chemistry showed a much lower proportion of methane sulfonate to be associated with supermicrometer particles than has been found elsewhere. Its molar ratio to nonsea salt sulfate suggested that the processes controlling the particulate chemistry do not exhibit a net temperature dependence. Elemental analysis of the aerosol also revealed the interesting possibility that debris from Siberian rivers transported on the moving ice represent a fairly widespread source of supermicrometer crustal material within the pack ice. Highly resolved measurements of aerosol number size distributions were made in the diameter range 3 nm to 500 nm. 3 distinct modal sizes were usually present, the âultrafineâ, âAitkenâ and âaccumulationâ modes centred on 14, 45 and 170 nm diameter, respectively. The presence of ultrafine particles, implying recent production, was more frequent than has been found in lower latitude remote marine areas. Evidence suggests that they were mixed to the surface from higher levels. Sudden and often drastic changes in aerosol concentration and size distribution were surprisingly frequent in view of the relatively slowly changing meteorology of the central Arctic during the study period and the absence of strong pollution sources. They were most common in particles likely to have taken part in cloud formation (> 80 nm diameter). 2 factors appear to have been involved in these sudden changes. The 1st was the formation of vertical gradients in aerosol concentration due to interactions between particles and clouds or favoured regions for new particle production during periods of stability. The 2nd was sporadic localised breakdowns of the stability, bringing changed particle concentrations to the measurement level. Probable reasons for these sporadic mixing events were indicated by the structure of the Marine Boundary Layer (MBL) investigated with high resolution rawinsondes. Low level jets were present about 60% of the time, producing conditions conductive to turbulence and shear-induced waves. It is concluded that an even more detailed study of meteorological processes in the MBL in conjunction with more highly time-resolved measurements of gas-aerosol physics and chemistry appears to be essential in any future research aimed at studying the indirect, cloud mediated, effect of aerosol particles
- âŠ