7,368 research outputs found

    Speckle observations with PISCO in Merate - V. Astrometric measurements of visual binaries in 2006

    Get PDF
    International audienceWe present relative astrometric measurements of visual binaries made during the first semester of 2006, with the Pupil Interferometry Speckle camera and COronagraph at the 102-cm Zeiss telescope of the Brera Astronomical Observatory, in Merate. Our sample contains orbital couples as well as binaries whose motion is still uncertain. We obtained 217 new measurements of 194 objects, with angular separations in the range 0.1-4.2arcsec, and an average accuracy of 0.01arcsec. The mean error on the position angles is 0.5°. About half of those angles could be determined without the usual 180° ambiguity by the application of triple-correlation techniques. We also present a revised orbit for ADS 277 for which the previously published orbit resulted in a large residual from our measurements

    Letter to the Editor

    Get PDF
    Page et al. appear to have missed our point that the teratogenic effects of oil on fish derive from embryonic exposure to environmentally persistent 3- and 4-ring polycyclic aromatic hydrocarbons (PAHs). They regard our conclusions as incorrect because we failed to demonstrate causality or a clear dose-response relationship. As evidence for lack of causality, they indicate that our data were not replicated. However, our report was a companion paper to a similar one demonstrating PAH-induced teratogenesis in herring embryos, also in the low ppb. Current literature corroborates our data and careful consideration of our conclusion demonstrates that their inclusion of low molecular weight PAHs in their dose-response relationship is counter to their thesis that dose measures should only include toxic compounds. When we published this work 12 years ago, the concept that PAHs with high octanol-partition coefficient (KOW) were teratogenic at concentrations below their solubility was considered novel. Since then, the sensitivity of developing fish embryos to ppb concentrations of PAHs dissolved in water has been confirmed for fish embryos exposed to oiled sediments, dissolved mixtures of PAHs derived from oiled sediments, and specific high molecular weight PAHs dissolved in water; additional references will be found in the Supplemental Data. More recently, experiments involving specific PAHs with partition-controlled delivery systems also have demonstrated toxic effects at levels below aqueous solubility limits. At least eleven reports replicate our findings in seven different fish species and support our conclusion that accumulation of PAHs by embryos depends on the kinetics of the transfer of PAHs from oil to egg rather than PAH solubility

    Formation Scenario for Wide and Close Binary Systems

    Full text link
    Fragmentation and binary formation processes are studied using three-dimensional resistive MHD nested grid simulations. Starting with a Bonnor-Ebert isothermal cloud rotating in a uniform magnetic field, we calculate the cloud evolution from the molecular cloud core (n=10^4 cm^-3) to the stellar core (n \simeq 10^22 cm^-3). We calculated 147 models with different initial magnetic, rotational, and thermal energies, and the amplitudes of the non-axisymmetric perturbation. In a collapsing cloud, fragmentation is mainly controlled by the initial ratio of the rotational to the magnetic energy, regardless of the initial thermal energy and amplitude of the non-axisymmetric perturbation. When the clouds have large rotational energies in relation to magnetic energies, fragmentation occurs in the low-density evolution phase (10^12 cm^-3 < n < 10^15 cm^-3) with separations of 3-300 AU. Fragments that appeared in this phase are expected to evolve into wide binary systems. On the other hand, fragmentation does not occur in the low-density evolution phase, when initial clouds have large magnetic energies in relation to the rotational energies. In these clouds, fragmentation only occurs in the high-density evolution phase (n > 10^17 cm^-3) after the clouds experience significant reduction of the magnetic field owing to Ohmic dissipation in the period of 10^12 cm^-3 < n < 10^15 cm^-3. Fragments appearing in this phase have separations of < 0.3 AU, and are expected to evolve into close binary systems. As a result, we found two typical fragmentation epochs, which cause different stellar separations. Although these typical separations are disturbed in the subsequent gas accretion phase, we might be able to observe two peaks of binary separations in extremely young stellar groups.Comment: 45 pages,12 figures, Submitted to ApJ, For high resolution figures see http://www2.scphys.kyoto-u.ac.jp/~machidam/protostar/proto/main-astroph.pd

    The High Angular Resolution Multiplicity of Massive Stars

    Full text link
    We present the results of a speckle interferometric survey of Galactic massive stars that complements and expands upon a similar survey made over a decade ago. The speckle observations were made with the KPNO and CTIO 4 m telescopes and USNO speckle camera, and they are sensitive to the detection of binaries in the angular separation regime between 0.03" and 5" with relatively bright companions (Delta V < 3). We report on the discovery of companions to 14 OB stars. In total we resolved companions of 41 of 385 O-stars (11%), 4 of 37 Wolf-Rayet stars (11%), and 89 of 139 B-stars (64%; an enriched visual binary sample that we selected for future orbital determinations). We made a statistical analysis of the binary frequency among the subsample that are listed in the Galactic O Star Catalog by compiling published data on other visual companions detected through adaptive optics studies and/or noted in the Washington Double Star Catalog and by collecting published information on radial velocities and spectroscopic binaries. We find that the binary frequency is much higher among O-stars in clusters and associations compared to the numbers for field and runaway O-stars, consistent with predictions for the ejection processes for runaway stars. We present a first orbit for the O-star Delta Orionis, a linear solution of the close, apparently optical, companion of the O-star Iota Orionis, and an improved orbit of the Be star Delta Scorpii. Finally, we list astrometric data for another 249 resolved and 221 unresolved targets that are lower mass stars that we observed for various other science programs.Comment: 76 pages, 6 figures, 11 table

    Ages for illustrative field stars using gyrochronology: viability, limitations and errors

    Full text link
    We here develop an improved way of using a rotating star as a clock, set it using the Sun, and demonstrate that it keeps time well. This technique, called gyrochronology, permits the derivation of ages for solar- and late-type main sequence stars using only their rotation periods and colors. The technique is clarified and developed here, and used to derive ages for illustrative groups of nearby, late-type field stars with measured rotation periods. We first demonstrate the reality of the interface sequence, the unifying feature of the rotational observations of cluster and field stars that makes the technique possible, and extends it beyond the proposal of Skumanich by specifying the mass dependence of rotation for these stars. We delineate which stars it cannot currently be used on. We then calibrate the age dependence using the Sun. The errors are propagated to understand their dependence on color and period. Representative age errors associated with the technique are estimated at ~15% (plus possible systematic errors) for late-F, G, K, & early-M stars. Ages derived via gyrochronology for the Mt. Wilson stars are shown to be in good agreement with chromospheric ages for all but the bluest stars, and probably superior. Gyro ages are then calculated for each of the active main sequence field stars studied by Strassmeier and collaborators where other ages are not available. These are shown to be mostly younger than 1Gyr, with a median age of 365Myr. The sample of single, late-type main sequence field stars assembled by Pizzolato and collaborators is then assessed, and shown to have gyro ages ranging from under 100Myr to several Gyr, and a median age of 1.2Gyr. Finally, we demonstrate that the individual components of the three wide binaries XiBooAB, 61CygAB, & AlphaCenAB yield substantially the same gyro ages.Comment: 58 pages, 18 color figures, accepted for publication in The Astrophysical Journal; Age uncertainties slightly modified upon correcting an algebraic error in Section

    Kinematic study of the disrupting globular cluster Palomar 5 using VLT spectra

    Full text link
    Wide-field photometric data from the Sloan Digital Sky Survey have recently revealed that the Galactic globular cluster Palomar 5 is in the process of being tidally disrupted (Odenkirchen et al. 2001). Here we investigate the kinematics of this sparse remote star cluster using high resolution spectra from the Very Large Telescope (VLT). Twenty candidate cluster giants located within 6 arcmin of the cluster center have been observed with the UV-Visual Echelle Spectrograph (UVES) on VLT-UT2. The spectra provide radial velocities with a typical accuracy of 0.15 km/s. We find that the sample contains 17 certain cluster members with very coherent kinematics, two unrelated field dwarfs, and one giant with a deviant velocity, which is most likely a cluster binary showing fast orbital motion. From the confirmed members we determine the heliocentric velocity of the cluster as -58.7 +- 0.2 km/s. The total line-of-sight velocity dispersion of the cluster stars is 1.1 +- 0.2 km/s (all members) or 0.9 +- 0.2 km/s (stars on the red giant branch only). This is the lowest velocity dispersion that has so far been measured for a stellar system classified as a globular cluster. The shape of the velocity distribution suggests that there is a significant contribution from orbital motions of binaries and that the dynamical part of the velocity dispersion is therefore still substantially smaller than the total dispersion. ... (abridged)Comment: 29 pages including 10 figures, accepted for publication in the Astronomical Journa

    Debris disks in main sequence binary systems

    Get PDF
    We observed 69 A3-F8 main sequence binary star systems using the Multiband Imaging Photometer for Spitzer onboard the Spitzer Space Telescope. We find emission significantly in excess of predicted photospheric flux levels for 9(+4/-3)% and 40(+7/-6)% of these systems at 24 and 70 microns, respectively. Twenty two systems total have excess emission, including four systems that show excess emission at both wavelengths. A very large fraction (nearly 60%) of observed binary systems with small (<3 AU) separations have excess thermal mission. We interpret the observed infrared excesses as thermal emission from dust produced by collisions in planetesimal belts. The incidence of debris disks around main sequence A3-F8 binaries is marginally higher than that for single old AFGK stars. Whatever combination of nature (birth conditions of binary systems) and nurture (interactions between the two stars) drives the evolution of debris disks in binary systems, it is clear that planetesimal formation is not inhibited to any great degree. We model these dust disks through fitting the spectral energy distributions and derive typical dust temperatures in the range 100--200 K and typical fractional luminosities around 10^-5, with both parameters similar to other Spitzer-discovered debris disks. Our calculated dust temperatures suggest that about half the excesses we observe are derived from circumbinary planetesimal belts and around one third of the excesses clearly suggest circumstellar material. Three systems with excesses have dust in dynamically unstable regions, and we discuss possible scenarios for the origin of this short-lived dust.Comment: ApJ, in press. 57 pages, including 7 figures (one of which is in color

    Astrometric Methods and Instrumentation to Identify and Characterize Extrasolar Planets: A Review

    Full text link
    I present a review of astrometric techniques and instrumentation utilized to search for, detect, and characterize extra-solar planets. First, I briefly summarize the properties of the present-day sample of extrasolar planets, in connection with predictions from theoretical models of planet formation and evolution. Next, the generic approach to planet detection with astrometry is described, with significant discussion of a variety of technical, statistical, and astrophysical issues to be faced by future ground-based as well as space-borne efforts in order to achieve the required degree of measurement precision. After a brief summary of past and present efforts to detect planets via milli-arcsecond astrometry, I then discuss the planet-finding capabilities of future astrometric observatories aiming at micro-arcsecond precision. Lastly, I outline a number experiments that can be conducted by means of high-precision astrometry during the next decade, to illustrate its potential for important contributions to planetary science, in comparison with other indirect and direct methods for the detection and characterization of planetary systems.Comment: 61 pages, 8 figures, PASP, accepted (October 2005 issue
    • 

    corecore