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Letter to the Editor

The authors’ reply:

Page et al. [1] appear to have missed our point that the
teratogenic effects of oil on fish derive from embryonic expo-
sure to environmentally persistent 3- and 4-ring polycyclic
aromatic hydrocarbons (PAHs) [2]. They regard our conclu-
sions as incorrect because we failed to demonstrate causality or
a clear dose-response relationship. As evidence for lack of
causality, they indicate that our data were not replicated.
However, our report was a companion paper to a similar one
demonstrating PAH-induced teratogenesis in herring embryos
[3], also in the low ppb. Current literature corroborates our data
and careful consideration of our conclusion demonstrates that
their inclusion of low molecular weight PAHs in their dose-
response relationship is counter to their thesis that dose meas-
ures should only include toxic compounds.

When we published this work 12 years ago, the concept that
PAHs with high octanol-partition coefficient (KOW) were ter-
atogenic at concentrations below their solubility was considered
novel. Since then, the sensitivity of developing fish embryos
to ppb concentrations of PAHs dissolved in water has been
confirmed for fish embryos exposed to oiled sediments [3],
dissolved mixtures of PAHs derived from oiled sediments,
and specific high molecular weight PAHs dissolved in water;
additional references will be found in the Supplemental Data.
More recently, experiments involving specific PAHs with
partition-controlled delivery systems also have demonstrated
toxic effects at levels below aqueous solubility limits. At least
eleven reports replicate our findings in seven different fish
species and support our conclusion that accumulation of PAHs
by embryos depends on the kinetics of the transfer of PAHs
from oil to egg rather than PAH solubility.

As with any pioneering research, our study 12 years ago
lacked corroboration in the literature initially, but since then,
our conclusions have inspired research elucidating mechanisms
of PAH embryotoxicity in much greater detail. At the time we
published our paper, the narcosis model of PAH toxicity was
presumed to be the most important source of injury following
oil spills. At least two more toxicity mechanisms have been
described since that time. Induction and effects of CYP1A
similar to those of dioxin-like compounds have been demon-
strated for high KOW compounds such as some C2 phenan-
threnes. More recently, Incardona et al. [4] demonstrated that
compounds such as unsubstituted phenanthrene and dibenzo-
thiophene disrupt signal conduction in developing hearts, caus-
ing decreased aerobic capacity in survivors [5].

Despite this decade of effort, Page et al. [1] suggest that our
effects may have resulted from metabolic intermediates pro-
duced during microbial digestion of oil in our incubators.
However, the compounds and mechanisms by which microbial
degradation of oil results in teratogenesis have not been

described, nor has microbial degradation of oil been shown
to increase the toxicity of oil-contaminated effluents.

Page et al.’s [1] misunderstanding of the relationship
between weathering and PAH toxicity is apparent when they
indicate that we believe that ‘‘oil becomes more toxic as it
weathers.’’ We have noted, as described above, that the most
toxic components of oil are also the most environmentally
persistent and thus become more concentrated in the oil as
weathering proceeds because other, less toxic oil components
are lost more quickly. Although this means a unit mass of very
weathered oil is more toxic than a unit mass of less weathered
oil, it does not follow that a unit mass of oil will increase in
toxicity as it weathers.

The compositional differences in the oil used in our study
revealed the most embryotoxic components to be the PAH with
highest molecular weights. Our weathered oil (WO) and very
weathered oil (VWO) were both derived from Alaska North
Slope crude oil, the cargo oil of the Exxon Valdez, but had
different compositions caused by the weathering differences.
For example, the dibenzothiophenes, phenanthrenes, and chrys-
enes accounted for more than 80% of the total PAH (TPAH) in
the oil phase of our VWO but contributed to less than half the
TPAH of our WO. However, the absolute concentrations of
these heavy compounds were similar in the WO and VWO oils
because of the effects of loss rate kinetics. Comparison of the
effects associated with exposure to WO and VWO amounted to
an examination of the potency of compounds present in WO but
not in VWO. It was from these observations that we concluded
that ‘‘. . .the smaller PAHs contribute relatively little to
observed toxicity’’ [2] in our embryotoxicity tests.

As a result of misunderstanding these observations, Page
et al. [1] offer a dose-response curve that includes compounds
with little toxic effect such as naphthalenes. Including these
lower molecular weight PAHs in their dose measures causes
Page et al. [1] to inflate their doses relative to our VWO dose;
hence, plots using these inflated values create the misleading
impression that our VWO response does not fit a dose-response
relationship. If embryotoxicity were dependent on a narcosis
mechanism of toxicity, then the lighter compounds such as
napthalenes would be much more relevant, but that is not the
case. Consider the relationship between embryo mortality and
the most environmentally persistent PAHs shown in Figure 1. In
this figure we present the geometric mean concentration of
these compounds in water during the first 63 d of exposure.
Instead of concluding that no dose response exists, we conclude
that the lowest effective concentration of these compounds is
near 0.1 ppb.

Page et al.’s misapprehension [1] extends to their analysis of
the dose-response relationships in Barron et al. [6], where they
claim that the VWO failed to fit Barron et al’s. toxic-unit based
dose-response relationships. Barron et al. compared the explan-
atory value of different toxicity models based on data derived
from our experiments [2] and those of Carls et al. [3]. The point
made by Barron et al. was that narcosis models of toxicity did
not predict effects as well as models based on more environ-
mentally persistent PAHs such as C2 to C4 phenanthrenes. This
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is in agreement with our conclusions. What is more important is
that these different modes of toxicity are not mutually exclusive
and that toxicity proceeds by multiple pathways. The impor-
tance of these different pathways will vary with the composition
of toxicant mixtures, as well as by species and life stage.
Consequently, adherence to a single view of toxicity can lead
to misinterpretation of results.

In summary, Page et al. [1] do not follow their own admon-
ition when they describe our findings as unsupported. They
initially argue that the appropriate dose-response relationship
should include only those components that cause toxicity, but
then evaluated our dose measures with a metric they identified
as inappropriate. They claim our work lacks corroboration or
confirmation, ignoring the substantial body of literature over
the last twelve years demonstrating otherwise. We therefore

dismiss the concerns raised by Page et al. [1] as entirely without
merit, and stand by our conclusions.

SUPPLEMENTAL DATA

Supplemental References. (29.7 KB DOC).

Ron A Heintz

Stanley D. Rice

Mark G. Carls

NOAA Fisheries

Juneau, Alaska, USA

Jeffery W. Short

JWS Consulting

Juneau, Alaska, USA

REFERENCES

1. Page DS, Neff JM, Landrum PF, Chapman PM. 2011. Sensitivity of pink
salmon (Oncorhynchus gorbuscha) embryos to weathered crude oil.
Environ Toxicol Chem, DOI: 10.1002/etc.694 (this issue).

2. Heintz RA, Short JW, Rice SD. 1999. Sensitivity of fish embryos to
weathered crude oil: Part II. Increased mortality of pink salmon
(Oncorhynchus gorbuscha) embryos incubating downstream from
weathered Exxon Valdez crude oil. Environ Toxicol Chem 18:494–503.

3. Carls MG, Rice SD, Hose JE. 1999. Sensitivity of fish embryos to
weathered crude oil: Part I. Low-level exposure during incubation causes
malformations, genetic damage, and mortality in larval Pacific herring
(Clupea pallasi). Environ Toxicol Chem 18–3:481–493.

4. Incardona JP, Collier TK, Scholz NL. 2004. Defects in cardiac function
precede morphological abnormalities in fish embryos exposed to
polycyclic aromatic hydrocarbons. Toxicol Appl Pharmacol 196:191–
205.

5. Hicken CE, Linbo TL, Baldwin DH, Willis ML, Myers MS, Holland L,
Larsen M, Stekoll MS, Rice SD, Collier TK, Scholz NL, Incardona JP.
2011. Sublethal exposure to crude oil during embryonic development
alters cardiacmorphology and reduces aerobic capacity in adult fish.Proc
Natl Acad Sci 108:7086–7090.

6. BarronMG, Carls MG, Heintz R, Rice SD. 2004. Evaluation of fish early
life-stage toxicity models of chronic embryonic exposures to complex
polycyclic aromatic hydrocarbon mixtures. Toxicol Sci 78:60–67.

7. Short JW, Heintz RA. 1997. Identification of Exxon Valdez oil in
sediments and tissues from Prince William Sound and the Northwestern
Gulf of Alaska based on a PAH weathering model. Environ Sci Technol
31:2375–2384.

Fig. 1. Mortality of developing pink salmon embryos following exposure to
the sevenmost environmentally persistent polycyclic aromatic hydrocarbons
(PAHs) inExxon Valdez crude oil. Concentrations are the geometricmean of
PAHswith loss-rate constants less than0.1 [7] in incubator effluents averaged
over the first 63 d exposure [2].

2 Environ. Toxicol. Chem. 30, 2011 R.A. Heintz et al.



Supplemental References 

1. Heintz RA, Rice SD, Wertheimer AC, Bradshaw RF, Thrower FP, Joyce JE, Short JW. 2000. 

Delayed effects on growth and marine survival of pink salmon Oncorhynchus 

gorbuscha after exposure to crude oil during embryonic development. Mar Ecol Progr 

Ser 208: 205-216. 

2. Couillard CM. 2002. A microscale test to measure petroleum oil toxicity to mummichog 

embryos. Environmental Toxicology 17: 195-202. 

3. Colavecchia MV, Backus SM, Hodson PV, Parrott JL. 2004. Toxicity of oil sands to early 

life stages of fathead minnows (Pimephales promelas). Environ Toxicol Chem 23-7: 

1709-1718. 

4. Rhodes S, Farwell A, Hewitt LM, MacKinnon M, Dixon DG. 2005. The effects of 

dimethylated and alkylated polycyclic aromatic hydrocarbons on the embryonic 

development of the Japanese medaka. Ecotoxicol Environ Saf 60: 247-258. 

5. Farwell A, Nero V, Croft M, Bal P, Dixon DG. 2006. Modified Japanese medaka embryo-

larval bioassay for rapid determination of developmental abnormalities. Arch Environ 

Contam Toxicol 51: 600-607. 

6. Billiard SM, Querbach K, Hodson PV. 1999. Toxicity of retene to early life stages of two 

freshwater fish species. Environ Toxicol Chem 18-9: 2070-2077. 

7. Brinkworth LC, Hodson PV, Tabash S, Lee P. 2003. CYP1A induction and blue sac disease 

in early developmental stages of rainbow trout (Oncorhynchus mykiss) exposed to 

retene. J Toxicol and Environ Health A 66: 627-646. 

8. Hawkins SA, Billiard SM, Tabash SP, Brown RS, Hodson PV. 2002. Altering cytochrome 

P4501A activity affects polycyclic aromatic hydrocarbon metabolism and toxicity in 

rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem 21-9: 1845-1853. 

9. Turcotte D, Akhtar P, Bowerman M, Kiparissis Y, Brown RS, Hodson PV. 2011. Measuring 

the toxicity of alkyl-phenanthrenes to early life stafes of medaka (Oryzias latipes) 

using partition-controlled delivery. Environ Toxicol Chem 30-2: 487-495. 



10. Kiparissis Y, Akhtar P, Hodson PV, Brown RS. 2003. Partition-controlled delivery of 

toxicants: A novel in vivo approach for embryo toxicity testing. Environ Sci Technol 37: 

2262-2266. 

11. Carls MG, Meador JP. 2009. A perspective on the toxicity of petrogenic PAHs to 

developing fish embryos related to environmental chemistry. Human and Ecological 

Risk Assessment: An International Journal, 15-6: 1084-1098.  

12. Hamdoun AM, Griffin FJ and Cherr GN. 2002. Tolerance to biodegraded  

crude oil in marine invertebrate embryos and larvae is associated with  

expression of a multixenobiotic resistance transporter. Aquatic  

Toxicology, 61: 127-140. 

13. Wang Z, Hollebone BP, Fingas M, Fieldhouse B, Sigouin L. 2003. Characteristics of 

spilled oils, fuels, and petroleum products: 1. Composition and properties of selected 

oils. EPA/600/R-03/072. U.S. Environmental Protections Agency, Washington, DC.  

 


	Letter to the Editor
	

	The authors' reply

	Text6:     This article is a U.S. government work, and is not subject to copyright in the United States.


