8,919 research outputs found

    Polar Varieties, Real Equation Solving and Data-Structures: The hypersurface case

    Get PDF
    In this paper we apply for the first time a new method for multivariate equation solving which was developed in \cite{gh1}, \cite{gh2}, \cite{gh3} for complex root determination to the {\em real} case. Our main result concerns the problem of finding at least one representative point for each connected component of a real compact and smooth hypersurface. The basic algorithm of \cite{gh1}, \cite{gh2}, \cite{gh3} yields a new method for symbolically solving zero-dimensional polynomial equation systems over the complex numbers. One feature of central importance of this algorithm is the use of a problem--adapted data type represented by the data structures arithmetic network and straight-line program (arithmetic circuit). The algorithm finds the complex solutions of any affine zero-dimensional equation system in non-uniform sequential time that is {\em polynomial} in the length of the input (given in straight--line program representation) and an adequately defined {\em geometric degree of the equation system}. Replacing the notion of geometric degree of the given polynomial equation system by a suitably defined {\em real (or complex) degree} of certain polar varieties associated to the input equation of the real hypersurface under consideration, we are able to find for each connected component of the hypersurface a representative point (this point will be given in a suitable encoding). The input equation is supposed to be given by a straight-line program and the (sequential time) complexity of the algorithm is polynomial in the input length and the degree of the polar varieties mentioned above.Comment: Late

    Polar Varieties and Efficient Real Elimination

    Full text link
    Let S0S_0 be a smooth and compact real variety given by a reduced regular sequence of polynomials f1,...,fpf_1, ..., f_p. This paper is devoted to the algorithmic problem of finding {\em efficiently} a representative point for each connected component of S0S_0 . For this purpose we exhibit explicit polynomial equations that describe the generic polar varieties of S0S_0. This leads to a procedure which solves our algorithmic problem in time that is polynomial in the (extrinsic) description length of the input equations f1,>...,fpf_1, >..., f_p and in a suitably introduced, intrinsic geometric parameter, called the {\em degree} of the real interpretation of the given equation system f1,>...,fpf_1, >..., f_p.Comment: 32 page

    Polar Varieties and Efficient Real Equation Solving: The Hypersurface Case

    Full text link
    The objective of this paper is to show how the recently proposed method by Giusti, Heintz, Morais, Morgenstern, Pardo \cite{gihemorpar} can be applied to a case of real polynomial equation solving. Our main result concerns the problem of finding one representative point for each connected component of a real bounded smooth hypersurface. The algorithm in \cite{gihemorpar} yields a method for symbolically solving a zero-dimensional polynomial equation system in the affine (and toric) case. Its main feature is the use of adapted data structure: Arithmetical networks and straight-line programs. The algorithm solves any affine zero-dimensional equation system in non-uniform sequential time that is polynomial in the length of the input description and an adequately defined {\em affine degree} of the equation system. Replacing the affine degree of the equation system by a suitably defined {\em real degree} of certain polar varieties associated to the input equation, which describes the hypersurface under consideration, and using straight-line program codification of the input and intermediate results, we obtain a method for the problem introduced above that is polynomial in the input length and the real degree.Comment: Late

    SPIRITUALITY IN LATE ADULTHOOD

    Get PDF

    Laughter as a Priming Agent for Change

    Get PDF
    The purpose of this study was to analyze the importance of laughter as a factor in influencing employee job satisfaction ratings. The Job Satisfaction Survey (Spector, 1985, 1997) and pulses of laughter were used in this study. To explore the relationship between laughter and job satisfaction, results of the Job Satisfaction Survey (Spector, 1994) were collected quarterly (four times a year) for three consecutive years, beginning six months prior to the start of the two-year study and six months post. The study sample was composed of 545 employees (34% male, 66% female) operating out of 10 employee-owned retail chain locations across Midwestern United States. A quasi-experimental, time-series research model, utilizing a one-way repeated measure multivariate analysis of variance (MANOVA) was used in this study. The MANOVA determined significant differences existed. Further studies should be carried out in different settings to shed light on the versatility of laughter on job satisfaction and laughter pulses as a means of non-participatory intervention. Keywords: job satisfaction, supraliminal laughter, occupational stress, employee assistance program (EAP), mental health, counseling, priming, non-participatory interventions, counselor educatio

    Observations on creatine

    Get PDF
    n/

    Quiz Games as a model for Information Hiding

    Full text link
    We present a general computation model inspired in the notion of information hiding in software engineering. This model has the form of a game which we call quiz game. It allows in a uniform way to prove exponential lower bounds for several complexity problems of elimination theory.Comment: 46 pages, to appear in Journal of Complexit
    corecore