37 research outputs found

    Estimates of CO2 from fires in the United States: implications for carbon management

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fires emit significant amounts of CO<sub>2 </sub>to the atmosphere. These emissions, however, are highly variable in both space and time. Additionally, CO<sub>2 </sub>emissions estimates from fires are very uncertain. The combination of high spatial and temporal variability and substantial uncertainty associated with fire CO<sub>2 </sub>emissions can be problematic to efforts to develop remote sensing, monitoring, and inverse modeling techniques to quantify carbon fluxes at the continental scale. Policy and carbon management decisions based on atmospheric sampling/modeling techniques must account for the impact of fire CO<sub>2 </sub>emissions; a task that may prove very difficult for the foreseeable future. This paper addresses the variability of CO<sub>2 </sub>emissions from fires across the US, how these emissions compare to anthropogenic emissions of CO<sub>2 </sub>and Net Primary Productivity, and the potential implications for monitoring programs and policy development.</p> <p>Results</p> <p>Average annual CO<sub>2 </sub>emissions from fires in the lower 48 (LOWER48) states from 2002–2006 are estimated to be 213 (± 50 std. dev.) Tg CO<sub>2 </sub>yr<sup>-1 </sup>and 80 (± 89 std. dev.) Tg CO<sub>2 </sub>yr<sup>-1 </sup>in Alaska. These estimates have significant interannual and spatial variability. Needleleaf forests in the Southeastern US and the Western US are the dominant source regions for US fire CO<sub>2 </sub>emissions. Very high emission years typically coincide with droughts, and climatic variability is a major driver of the high interannual and spatial variation in fire emissions. The amount of CO<sub>2 </sub>emitted from fires in the US is equivalent to 4–6% of anthropogenic emissions at the continental scale and, at the state-level, fire emissions of CO<sub>2 </sub>can, in some cases, exceed annual emissions of CO<sub>2 </sub>from fossil fuel usage.</p> <p>Conclusion</p> <p>The CO<sub>2 </sub>released from fires, overall, is a small fraction of the estimated average annual Net Primary Productivity and, unlike fossil fuel CO<sub>2 </sub>emissions, the pulsed emissions of CO<sub>2 </sub>during fires are partially counterbalanced by uptake of CO<sub>2 </sub>by regrowing vegetation in the decades following fire. Changes in fire severity and frequency can, however, lead to net changes in atmospheric CO<sub>2 </sub>and the short-term impacts of fire emissions on monitoring, modeling, and carbon management policy are substantial.</p

    Satellite-based terrestrial production efficiency modeling

    Get PDF
    Production efficiency models (PEMs) are based on the theory of light use efficiency (LUE) which states that a relatively constant relationship exists between photosynthetic carbon uptake and radiation receipt at the canopy level. Challenges remain however in the application of the PEM methodology to global net primary productivity (NPP) monitoring. The objectives of this review are as follows: 1) to describe the general functioning of six PEMs (CASA; GLO-PEM; TURC; C-Fix; MOD17; and BEAMS) identified in the literature; 2) to review each model to determine potential improvements to the general PEM methodology; 3) to review the related literature on satellite-based gross primary productivity (GPP) and NPP modeling for additional possibilities for improvement; and 4) based on this review, propose items for coordinated research

    Fluxes of water, sediments, and biogeochemical compounds in salt marshes

    Get PDF
    Tidal oscillations systematically flood salt marshes, transporting water, sediments, organic matter, and biogeochemical elements such as silica. Here we present a review of recent studies on these fluxes and their effects on both ecosystem functioning and morphological evolution of salt marshes. We reexamine a simplified model for the computation of water fluxes in salt marshes that captures the asymmetry in discharge between flood and ebb. We discuss the role of storm conditions on sediment fluxes both in tidal channels and on the marsh platform. We present recent methods and field instruments for the measurement of fluxes of organic matter. These methods will provide long-term data sets with fine temporal resolution that will help scientists to close the carbon budget in salt marshes. Finally, the main processes controlling fluxes of biogenic and dissolved silica in salt marshes are explained, with particular emphasis on the uptake by marsh macrophytes and diatoms

    Simulation Modeling to Compare High-Throughput, Low-Iteration Optimization Strategies for Metabolic Engineering

    No full text
    Increasing the final titer of a multi-gene metabolic pathway can be viewed as a multivariate optimization problem. While numerous multivariate optimization algorithms exist, few are specifically designed to accommodate the constraints posed by genetic engineering workflows. We present a strategy for optimizing expression levels across an arbitrary number of genes that requires few design-build-test iterations. We compare the performance of several optimization algorithms on a series of simulated expression landscapes. We show that optimal experimental design parameters depend on the degree of landscape ruggedness. This work provides a theoretical framework for designing and executing numerical optimization on multi-gene systems

    Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sensing of Environment

    No full text
    Abstract MODIS primary production products (MOD17) are the first regular, near-real-time data sets for repeated monitoring of vegetation primary production on vegetated land at 1-km resolution at an 8-day interval. But both the inconsistent spatial resolution between the gridded meteorological data and MODIS pixels, and the cloud-contaminated MODIS FPAR/LAI (MOD15A2) retrievals can introduce considerable errors to Collection4 primary production (denoted as C4 MOD17) results. Here, we aim to rectify these problems through reprocessing key inputs to MODIS primary vegetation productivity algorithm, resulting in improved Collection5 MOD17 (here denoted as C5 MOD17) estimates. This was accomplished by spatial interpolation of the coarse resolution meteorological data input and with temporal filling of cloud-contaminated MOD15A2 data. Furthermore, we modified the Biome Parameter Look-U

    A Continuous Satellite-Derived Measure of Global Terrestrial Primary Production

    No full text
    Until recently, continuous monitoring of global vegetation productivity has not been possible because of technological limitations. This article introduces a new satellite-driven monitor of the global biosphere that regularly computes daily gross primary production (GPP) and annual net primary production (NPP) at 1-kilometer (km) resolution over 109,782,756 km2 of vegetated land surface. We summarize the history of global NPP science, as well as the derivation of this calculation, and current data production activity. The first data on NPP from the EOS (Earth Observing System) MODIS (Moderate Resolution Imaging Spectroradiometer) sensor are presented with different types of validation. We offer examples of how this new type of data set can serve ecological science, land management, and environmental policy. To enhance the use of these data by nonspecialists, we are now producing monthly anomaly maps for GPP and annual NPP that compare the current value with an 18-year average value for each pixel, clearly identifying regions where vegetation growth is higher or lower than normal
    corecore