9,200 research outputs found

    Numerical simulation of exciton dynamics in Cu2O at ultra low temperatures within a potential trap

    Full text link
    We have studied theoretically the relaxation behaviour of excitons in cuprous oxide (Cu2O) at ultra low temperatures when excitons are confined within a potential trap by solving numerically the Boltzmann equation. As relaxation processes, we have included in this paper deformation potential phonon scattering, radiative and non-radiative decay and Auger decay. The relaxation kinetics has been analysed for temperatures in the range between 0.3K and 5K. Under the action of deformation potential phonon scattering only, we find for temperatures above 0.5K that the excitons reach local equilibrium with the lattice i.e. that the effective local temperature is coming down to bath temperature, while below 0.5K a non-thermal energy distribution remains. Interestingly, for all temperatures the global spatial distribution of excitons does not reach the equilibrium distribution, but stays at a much higher effective temperature. If we include further a finite lifetime of the excitons and the two-particle Auger decay, we find that both the local and the global effective temperature are not coming down to bath temperature. In the first case we find a Bose-Einstein condensation (BEC) to occur for all temperatures in the investigated range. Comparing our results with the thermal equilibrium case, we find that BEC occurs for a significantly higher number of excitons in the trap. This effect could be related to the higher global temperature, which requires an increased number of excitons within the trap to observe the BEC. In case of Auger decay, we do not find at any temperature a BEC due to the heating of the exciton gas

    Rubber friction on wet and dry road surfaces: the sealing effect

    Full text link
    Rubber friction on wet rough substrates at low velocities is typically 20-30% smaller than for the corresponding dry surfaces. We show that this cannot be due to hydrodynamics and propose a novel explanation based on a sealing effect exerted by rubber on substrate "pools" filled with water. Water effectively smoothens the substrate, reducing the major friction contribution due to induced viscoelastic deformations of the rubber by surface asperities. The theory is illustrated with applications related to tire-road friction.Comment: Format Revtex 4; 8 pages, 11 figures (no color); Published on Phys. Rev. B (http://link.aps.org/abstract/PRB/v71/e035428); previous work on the same topic: cond-mat/041204

    Weakly Coupled Motion of Individual Layers in Ferromagnetic Resonance

    Full text link
    We demonstrate a layer- and time-resolved measurement of ferromagnetic resonance (FMR) in a Ni81Fe19 / Cu / Co93Zr7 trilayer structure. Time-resolved x-ray magnetic circular dichroism has been developed in transmission, with resonant field excitation at a FMR frequency of 2.3 GHz. Small-angle (to 0.2 degree), time-domain magnetization precession could be observed directly, and resolved to individual layers through elemental contrast at Ni, Fe, and Co edges. The phase sensitivity allowed direct measurement of relative phase lags in the precession oscillations of individual elements and layers. A weak ferromagnetic coupling, difficult to ascertain in conventional FMR measurements, is revealed in the phase and amplitude response of individual layers across resonance.Comment: 22 pages, 6 figures submitted to Physical Review

    Spin Reorientations Induced by Morphology Changes in Fe/Ag(001)

    Full text link
    By means of magneto-optical Kerr effect we observe spin reorientations from in-plane to out-of-plane and vice versa upon annealing thin Fe films on Ag(001) at increasing temperatures. Scanning tunneling microscopy images of the different Fe films are used to quantify the surface roughness. The observed spin reorientations can be explained with the experimentally acquired roughness parameters by taking into account the effect of roughness on both the magnetic dipolar and the magnetocrystalline anisotropy.Comment: 4 pages with 3 EPS figure

    Mass resolution optimization in a large isotopic composition experiment

    Get PDF
    A range-energy experiment was built to measure the isotopic composition of galactic cosmic rays. An enrichment of neutron rich isotopes, 22Ne and (25Mg + 26Mg) in particular, when compared to the solar composition is shown. A rich statistics measurement of these and other neutron-rich isotopes in the galactic flux yields information to the source of these particles. A computer simulation of the experiment was used to estimate the instrument resolution. The Cherenkov detector light collection efficiency, was calculated. Absorption of light in the radiator was considered to determine the optimum Cherenkov medium thickness. The experiment will determine the isotopic composition for the elements neon through argon in the energy range 300 to 800 MeV per nucleon

    Luttinger liquid superlattices

    Full text link
    We calculate the correlation functions and the DC conductivity of Luttinger liquid superlattices, modeled by a repeated pattern of interacting and free Luttinger liquids. In a specific realization, where the interacting subsystem is a Hubbard chain, the system exhibits a rich phase diagram with four different phases: two metals and two compressible insulators. In general, we find that the effective low energy description amalgamates features of both types of liquids in proportion to their spatial extent, suggesting the interesting possibility of `engineered' Luttinger liquids.Comment: RevTeX, 5 pages, 3 figure

    An off-shell I.R. regularization strategy in the analysis of collinear divergences

    Full text link
    We present a method for the analysis of singularities of Feynman amplitudes based on the Speer sector decomposition of the Schwinger parametric integrals combined with the Mellin-Barnes transform. The sector decomposition method is described in some details. We suggest the idea of applying the method to the analysis of collinear singularities in inclusive QCD cross sections in the mass-less limit regularizing the forward amplitudes by an off-shell choice of the initial particle momenta. It is shown how the suggested strategy works in the well known case of the one loop corrections to Deep Inelastic Scattering.Comment: 25 pages, 3 figure

    Definition of the σW regulon of Bacillus subtilis in the absence of stress

    Get PDF
    Bacteria employ extracytoplasmic function (ECF) sigma factors for their responses to environmental stresses. Despite intensive research, the molecular dissection of ECF sigma factor regulons has remained a major challenge due to overlaps in the ECF sigma factor-regulated genes and the stimuli that activate the different ECF sigma factors. Here we have employed tiling arrays to single out the ECF σW regulon of the Gram-positive bacterium Bacillus subtilis from the overlapping ECF σX, σY, and σM regulons. For this purpose, we profiled the transcriptome of a B. subtilis sigW mutant under non-stress conditions to select candidate genes that are strictly σW-regulated. Under these conditions, σW exhibits a basal level of activity. Subsequently, we verified the σW-dependency of candidate genes by comparing their transcript profiles to transcriptome data obtained with the parental B. subtilis strain 168 grown under 104 different conditions, including relevant stress conditions, such as salt shock. In addition, we investigated the transcriptomes of rasP or prsW mutant strains that lack the proteases involved in the degradation of the σW anti-sigma factor RsiW and subsequent activation of the σW-regulon. Taken together, our studies identify 89 genes as being strictly σW-regulated, including several genes for non-coding RNAs. The effects of rasP or prsW mutations on the expression of σW-dependent genes were relatively mild, which implies that σW-dependent transcription under non-stress conditions is not strictly related to RasP and PrsW. Lastly, we show that the pleiotropic phenotype of rasP mutant cells, which have defects in competence development, protein secretion and membrane protein production, is not mirrored in the transcript profile of these cells. This implies that RasP is not only important for transcriptional regulation via σW, but that this membrane protease also exerts other important post-transcriptional regulatory functions

    An augmented space recursion study of the electronic structure of rough epitaxial overlayers

    Full text link
    In this communication we propose the use of the Augmented Space Recursion as an ideal methodology for the study of electronic and magnetic structures of rough surfaces, interfaces and overlayers. The method can take into account roughness, short-ranged clustering effects, surface dilatation and interdiffusion. We illustrate our method by an application of Fe overlayer on Ag (100) surface.Comment: 22 pages, Latex, 6 postscript figure
    • …
    corecore