1,892 research outputs found

    CCm performance in Arctic and Antarctic seaweeds in a warming and acidifying marine environment

    Get PDF
    Presentación oral al congresoOcean acidification and warming are affecting with special intensity the polar coastal ecosystems. The Arctic kelps Saccharina latissima and Laminaria solidungula from Kongsfjorden (Svalbard) were cultured at 4 and 9 ºC in combination with current (390 ppm, CC) and increased (1200 ppm, HC) levels of atmospheric CO2. The Antarctic endemic Desmarestia anceps and D. menziesii were cultured at 2 and 7 ºC, and also at CC and HC.For all these species ∂13C values suggested an absence of deactivation of carbon concentrating mechanisms at increased CO2 levels. The lack of inhibition of CCM at high CO2 shown by ∂13C values seems to be a common pattern in polar species, but it is not related to responses in photosynthesis and growth. Growth of both Arctic species were largely unaffected by increased CO2 conditions, regardless the temperature. In contrast, the Antarctic species were favored by high CO2, specially at the highest temperature. External carbonic anhydrase (eCA) was responsible for about 50% to 80% of the photosynthetic O2 evolution in all the species, according to inhibition assays using DBS. CO2 promoted a decrease in eCA contribution to O2 evolution in the Antarctic species but not in the Arctic ones. The addition of EZ did not promote further inhibition in any species, indicating a low relevance of internal CA, although a concomitant inhibition of eCA may mask this contribution if no other mechanism of active transport was operating. Our latest results of the gene expression of D. anceps reveal that there is a low response to CO2. The relevance of this resilience to CO2 in polar environments will be discussed.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Transcriptomics in brown algae

    Get PDF
    Brown algae are distributed worldwide on rocky shores. They are importenet components of ecosystems, they provide habitat, shelter and serve as nurseries for various marine organisms. The geographic as well as depth distribution of macroalgae is constrained by abiotic factors, especially light and temperature. It is therefore likely that due to the global change, distribution patterns of these organisms will change. In this work the molecular acclimation of two prominent brown macroalgae, Saccharina latissima (Arctic) and Desmarestia anceps (Antarctic), was analyzed and the acclimation potential of both species was compared.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Molecular stress response in polar algae

    Get PDF
    Geographical and vertical distribution patterns of macroalgae are constrained by abiotic factors such as light, including UVR and temperature. Hence, future global environmental changes could have a significant impact on geographic and vertical distribution patterns, as well as primary productivity. Polar waters are particularly vulnerable to warming but also to ocean acidification due to the increased solubility of CO2 in cold waters. Many studies have been conducted on the growth and photosynthetic performance of macroalgae under manifold stresses, yet the involved molecular processes of acclimation and adaption are still poorly understood. To compare molecular acclimation mechanisms in polar macroalgae, gene expression under abiotic stress has been investigated in an Arctic species, Saccharina latissima, and an Antarctic species, Desmarestia anceps. Both species response to abiotic stress with a multitude of transcriptional changes, but show different acclimation strategies. Critical components of acclimation mechanisms in Saccharina latissima are the differential regulation of photosynthetic components, ROS scavenging and carbohydrate metabolism, Desmarestia anceps on the contrary shows a high constitutive expression of the latter. Main components of molecular acclimation mechanisms to light and temperature stress in Desmarestia anceps include induction of protein and lipid modification processes for maintaining membrane and protein function. The high constitutive expression of several metabolism types in Desmarestia anceps might be due to the strong adaption to cold environments. However, as high constitutive gene expression requires extra energy, this lack of genetic regulation might display a disadvantage with respect to cosmopolitan eurythermic species in near-future scenarios.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Large Language Models Can Infer Psychological Dispositions of Social Media Users

    Full text link
    As Large Language Models (LLMs) demonstrate increasingly human-like abilities in various natural language processing (NLP) tasks that are bound to become integral to personalized technologies, understanding their capabilities and inherent biases is crucial. Our study investigates the potential of LLMs like ChatGPT to infer psychological dispositions of individuals from their digital footprints. Specifically, we assess the ability of GPT-3.5 and GPT-4 to derive the Big Five personality traits from users' Facebook status updates in a zero-shot learning scenario. Our results show an average correlation of r = .29 (range = [.22, .33]) between LLM-inferred and self-reported trait scores. Furthermore, our findings suggest biases in personality inferences with regard to gender and age: inferred scores demonstrated smaller errors for women and younger individuals on several traits, suggesting a potential systematic bias stemming from the underlying training data or differences in online self-expression

    A model of partial differential equations for HIV propagation in lymph nodes

    Get PDF
    Texto completo versión postprint de autor.-- PACS numbers: 02.30.Ks,02.30.Hq,87.18.Hf,87.19.XxA system of partial differential equations is used to model the dissemination of the Human Immunodeficiency Virus (HIV) in CD4+T cells within lymph nodes. Besides diffusion terms, the model also includes a time-delay dependence to describe the time lag required by the immunologic system to provide defenses to new virus strains. The resulting dynamics strongly depends on the properties of the invariant sets of the model, consisting of three fixed points related to the time independent and spatial homogeneous tissue configurations in healthy and infected states. A region in the parameter space is considered, for which the time dependence of the space averaged model variables follows the clinical pattern reported for infected patients: a short scale primary infection, followed by a long latency period of almost complete recovery and third phase characterized by damped oscillations around a value with large HIV counting. Depending on the value of the diffusion coefficient, the latency time increases with respect to that one obtained for the space homogeneous version of the model. It is found that same initial conditions lead to quite different spatial patterns, which depend strongly on the latency interval.This work was partially supported by the following Brazilian funding agencies: CAPES, FAPESB/PRONEX, CNPq and National Institute for Science and Technology/Complex Systems.Peer reviewe

    Darkness-induced effects on gene expression in Cosmarium crenatum (Zygnematophyceae) from a polar habitat

    Get PDF
    Light is a key environmental regulator in all photosynthetic organisms. Many studies focused on the physiologic response to changes in light availability of species from the Zygnematophyceae, but the impact of the absence of light and the molecular acclimation process on the other side have been poorly understood. Here we present transcriptomic analyses of Cosmarium crenatum from a polar habitat exposed to darkness. The algae were cultured in dark for one week; cell number and quantum yield of photosystem II (Fv/Fm) were monitored. Cell number was stable, but the Fv/Fm decreased in both groups, darkness-treated and control. Gene expression analysis revealed a strong repression of transcripts associated with photosynthesis, photorespiration and cell wall development. General carbohydrate and lipid metabolism were differentially regulated, but starch is shown to be the primary energy source in these conditions. Additionally, C. crenatum induced mRNA responsible for epigenetic modifications which may be a specific response to an adaption and acclimation to polar conditions. Our study sheds light on the molecular acclimation process to darkness and provides ecological implications for new perspectives in this specialized group of green algae

    Increased temperature and CO2 alleviate photoinhibition in Desmarestia anceps: from transcriptomics to carbon utilization

    Get PDF
    Ocean acidification and warming are affecting polar regions with particular intensity. Rocky shores of the Antarctic Peninsula are dominated by canopy-forming Desmarestiales. This study investigates the physiological and transcriptomic responses of the endemic macroalga Desmarestia anceps to a combination of different levels of temperature (2 and 7 °C), dissolved CO2 (380 and 1000 ppm), and irradiance (65 and 145 µmol photons m−2 s−1). Growth and photosynthesis increased at high CO2 conditions, and strongly decreased at 2 °C plus high irradiance, in comparison to the other treatments. Photoinhibition at 2 °C plus high irradiance was evidenced by the photochemical performance and intensive release of dissolved organic carbon. The highest number of differentially regulated transcripts was observed in thalli exposed to 2 °C plus high irradiance. Algal 13C isotopic discrimination values suggested an absence of down-regulation of carbon-concentrating mechanisms at high CO2. CO2 enrichment induced few transcriptomic changes. There was high and constitutive gene expression of many photochemical and inorganic carbon utilization components, which might be related to the strong adaptation of D. anceps to the Antarctic environment. These results suggest that increased temperature and CO2 will allow D. anceps to maintain its productivity while tolerating higher irradiances than at present conditions

    Proteomic profiling of the dystrophin complex and membrane fraction from dystrophic mdx muscle reveals decreases in the cytolinker desmoglein and increases in the extracellular matrix stabilizers biglycan and fibronectin

    Get PDF
    The almost complete loss of the membrane cytoskeletal protein dystrophin and concomitant drastic reduction in dystrophin-associated glycoproteins are the underlying mechanisms of the highly progressive neuromuscular disorder Duchenne muscular dystrophy. In order to identify new potential binding partners of dystrophin or proteins in close proximity to the sarcolemmal dystrophin complex, proteomic profiling of the isolated dystrophin–glycoprotein complex was carried out. Subcellular membrane fractionation and detergent solubilisation, in combination with ion exchange, lectin chromatography and density gradient ultracentrifugation, was performed to isolate a dystrophin complex-enriched fraction. Following gradient gel electrophoresis and on-membrane digestion, the protein constituents of the dystrophin fraction were determined by peptide mass spectrometry. This proteomic strategy resulted in the novel identification of desmoglein and desmoplakin, which act as cytolinker proteins and possibly exist in close proximity to the dystrophin complex in the sarcolemma membrane. Interestingly, comparative immunoblotting showed a significant reduction in desmoglein in dystrophin-deficient mdx skeletal muscles, reminiscent of the pathobiochemical fate of the dystrophin-associated core proteins in muscular dystrophy. Comparative membrane proteomics was used to correlate this novel finding to large-scale changes in the dystrophic phenotype. A drastic increase in the extracellular stabilizers biglycan and fibronectin was shown by both mass spectrometric analysis and immunoblotting. The reduced expression of desmoglein in dystrophin-deficient skeletal muscles, and simultaneous increase in components of the extracellular matrix, suggest that muscular dystrophy is associated with plasmalemmal disintegration, loss of cellular linkage and reactive myofibrosis
    • …
    corecore