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A system of partial differential equations is used to model the dissemination of the Human Im-
munodeficiency Virus (HIV) in CD4+T cells within lymph nodes. Besides diffusion terms, the model
also includes a time-delay dependence to describe the time lag required by the immunologic system
to provide defenses to new virus strains. The resulting dynamics strongly depends on the properties
of the invariant sets of the model, consisting of three fixed points related to the time independent and
spatial homogeneous tissue configurations in healthy and infected states. A region in the parameter
space is considered, for which the time dependence of the space averaged model variables follows the
clinical pattern reported for infected patients: a short scale primary infection, followed by a long
latency period of almost complete recovery and third phase characterized by damped oscillations
around a value with large HIV counting. Depending on the value of the diffusion coefficient, the
latency time increases with respect to that one obtained for the space homogeneous version of the
model. It is found that same initial conditions lead to quite different spatial patterns, which depend
strongly on the latency interval.

PACS numbers: 02.30.Ks,02.30.Hq,87.18.Hf,87.19.Xx

I. INTRODUCTION

The use of dynamical models to describe the infection
caused by the the human immunodeficiency virus (HIV)
started shortly after its identification as the responsible
agent of acquired immunodeficiency syndrome (AIDS)
[1–3]. Such studies aimed to describe the time evolution
of two blood stream agent populations involved in the
infectious process: the HIV and CD4+T cells, which be-
long to the immune system (IS) and constitute the main
virus target in the human organism [4–7]. The descrip-
tion of the HIV infection by this set of basic variables still
dominates. The largest part of the investigated model-
swhich take into account the influence of anti-viral drugs
[8–11], multiple virus strains [8–13] and more sophisti-
cated description of IS actions have never abandoned
these point of view [14, 15].
A quite different approach to describe the HIV dynam-

ics considers what happens to the CD4+T cells when
they are not yet in the blood stream. General lympho-
cytes are initially produced in the bone marrow, while a
fraction of such population is differentiated into CD4+T
in the thyme. There, they may get in contact with HIV
and become infected [16]. This is why the fractions of
healthy and infected CD4+T cells in the lymph nodes
have been regarded as basic model variables in such al-
ternative framework. Such alternative description of the
HIV infection dynamics required the identification of an
interaction mechanisms between the healthy and infected
cells in the lymph nodes, what was firstly achieved in
a cellular automaton (CA) model [17]. Later on, this
mechanism was used both within some variants of the
CA model [18] and in a model of ordinary differential

equations (ODE) with a time delay term [19]. It is im-
portant to call the attention that, since this infectious
path is based on the assumption of virus spreading in a
tissue, it does not include a variable to explicitly describe
the virus load on the blood stream.

The purpose of this work is to further explore the al-
ternative interaction mechanism, extending the quoted
ODE model to a set of partial differential equations
(PDE) to describe the spatiotemporal dynamics of
CD4+T cells on lymph nodes. The used approach con-
siders the following steps to describe the interactions
among CD4+T cells: i) infected cells infect neighbor-
ing healthy cells, as in usual contact process; ii) there
exists a finite non-zero time lag τ between the moment
when one cell is infected and when it dies. During this
lag, the attacked cell changes its infecting properties and
the IS sets up specific responses to virus strains; iii) new
cells produced in the bone marrow replace the dead ones.
Usual rate equations can be set up to describe the in-
dividual steps of the contact processes and subsequent
diffusion. On the other hand, the intrinsic modifications
occurring inside the infected cells require the introduc-
tion of a time-delay delay term in some of the differential
equations.

The system we consider in this work is of a very com-
plex nature, as it combines spacial dependence with ef-
fects of time delay. Extending an ODE system to take
into account each one of such generalizations amounts to
increase the level of mathematical difficulty to identify
the solutions of the system of equations or even to char-
acterize their main general properties. From the perspec-
tive of numerical integration, a large number (→ ∞) of
ODE’s becomes necessary when we discretize either the
space dependence or the time interval associated with
the dependence on the solution at past time intervals.
Therefore, we were forced to develop and adapt numer-
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ical methods to proceed with the numerical integration
of the equations of motion.
In spite of such difficulties, we still may count on some

basic properties, such that the time-delayed PDE system
admits space homogeneous and time independent solu-
tions, which coincide with the fixed-point (FP) solutions
of the ODE system [5, 20–22]. As in that case, the set
of three FP’s greatly influence the time evolution of both
homogeneous and inhomogeneous solutions to the PDE
system.
This work is organized as follows: In Sec. II, we briefly

describe the most important clinical aspects of the HIV
infection and derive a suitable PDE model. The mean-
ing of each term in the PDE system and some possible
choices of spatial dependence are also discussed. Section
III is dedicated to a thorough discussion of the solutions
obtained by a numerical integration of our model. When-
ever pertinent, properties of ODE fixed points are taken
into account to explain and interpret temporal behavior
and spatial patterns that emerge in the integration pro-
cess. Finally, Section IV closes the work with an overview
of most relevant ideas brought in this work and perspec-
tives for future investigations.

II. CD4+T DYNAMICS IN THE LYMPH NODES

The clinical description of non treated HIV infection
identifies a fairly constant pattern consisting of three well
characterized phases [23]: primary infection, clinical la-
tency and AIDS. The first phase looks much like a typical
viremia: it is characterized by a first large increase of HIV
in the organism and a subsequent pronounced decline of
the virus population, which results from a HIV-specific
response set up by the IS. The second phase is asymp-
tomatic and may present large variations depending on
the patient health conditions. It is characterized by a
very low but persistent HIV counting, indicating that the
virus never becomes inactive. The HIV molecular struc-
ture changes rapidly, so that new produced strains are
always attacking the organism, requiring the IS to pro-
duce new specific responses to each of them. Depending
on the patient’s IS ability, the latency phase may last
from a few months to several years. If untreated, the
HIV infection may evolve to the AIDS phase, when most
patients die by opportunistic infections. This phase is
reached when the patient underscores a critical thresh-
old in the CD4+T cell counting, typically 20 ∼ 35% of
that of a healthy individual [24].
To describe the CD4+T infection in the lymph nodes,

distinct cell concentrations in a two-dimensional patch
of tissue around a point −→r = xx̂ + yŷ are selected as
the PDE variables. Here x and y indicate the cartesian
coordinates of a point while x̂ and ŷ denote the unit vec-
tors along the respective directions. We further assume
that the tissue where the cells are located consists of a
square domain of area L2, so that (x, y) ∈ ([0, L], [0, L]).
We assume that each such tissue patch is small enough

to be considered as a macroscopic infinitesimal and large
enough to allow for a continuous concentration variation,
as one usually assumes in studies on space dependent bi-
ological models [25, 26]. It is further assumed that the
target cells can be found in healthy, infected and dead
states. Healthy and infected cells are split into two sub-
categories. We define H1(

−→r , t) (H2(
−→r , t)) as the con-

centration of healthy cells that were already born (not
yet born) by the time the individual became infected.
On the other hand, two types of infected cells are de-
noted by A(−→r , t) and B(−→r , t). The first one describes
the amount of newly infected CD4+T , while B(−→r , t) de-
scribes the same infected cells after a given time interval,
when they are about to be killed by the action of IS. Fi-
nally, D(−→r , t) describes the concentration of dead cells
in the lymph nodes. Since dead cells are also accounted
for, the local sum of all variables remains constant over
time and is normalized to 1.

The interactions among the quoted variables consider
the following basic steps: 1) Healthy cells become in-
fected if they get in contact with infected cells. However,
due to the fact that IS provides specific defense to ex-
isting virus, cell types H1 and H2 require contact with
different number of A cells to become infected. 2) In-
fected A cells change into B cells after some time delay.
At such latter stages, B cells have been under attack by
IS, so that they are less effective in infecting both H1

and H2 healthy cells. 3) B cells die and are replaced by
new cells, which can be both in the H2 or the A states.
4) Larger local concentrations of A cells are subject to a
diffusion process to the neighboring tissue patches.

The quoted rules can be translated into the following
PDE system:

∂H1

∂t
= −k5H1A

p − k6H1B
n + k9H1∇2A,

∂H2

∂t
= k3D − k5H2A

q − k6H2B
n + k9H2∇2A,

∂A

∂t
= −k1A (t− τ) + k4D + k5(H1A

p +H2A
q)

+k6(H1 +H2)B
n − k9(H1 +H2)∇2A,

∂B

∂t
= k1A (t− τ)− k2B,

∂D

∂t
= −k3D − k4D + k2B. (1)

In the above equations, all variables (H1, H2, A,B,D)
depend on time t and space −→r . For the sake of a sim-
pler notation, we omit this explicit indication, with the
exception of the terms that are subject to a delayed time
dependence, namely A(t−τ) that appear in the equations
for A and B. The exponent n indicates the order of the
contact process between one H and B cells in order that
the former become infected-A cells. n assumes the same
value for both H1 and H2. p and q play similar roles
with respect to the contact between A cells with H1 and
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H2, respectively. Infection of H1 by A cells is described
by a first order process (p = 1) but, to express the fact
that infection of new born H2 cells is only slightly less
effective than when HIV was first inoculated, the order of
infection of H2 by A cells is assumed to be described by
q ∼ 1.1 − 1.2. Note that, if we set q = 1, the equations
for H1 and H2 become essentially the same, i.e., if we
add both equations we obtain a system of four equations
for H = H1 + H2, A,B, and D. This assumption does
not produce any qualitative change the solutions of the
system, although the very long latency phase obtained
when q ∼ 1.1 − 1.2 becomes reduced reduced. Finally,
the contact process of the infection by B cells is assumed
to be of much higher order (n = 4) [17]. This accounts
for the fact already indicated in item (2), that when the
cells are about to die, they become much less efficient in
transmitting the disease.

The time delay τ required for the IS to mount an spe-
cific response is of the order of a few weeks. Therefore,
expressing the values of all rate constants in time unit
of week−1, we consider τ = 4, which is consistent to
the clinical observations [27–29] . The time delay term
changes, in a crucial way, the dynamics on the phase
space, generating trajectories that depend on memory ef-
fects. As was discussed in a previous work [19], the pres-
ence of non-zero τ may increase the time interval during
which the trajectory flows through the slow dynamic re-
gion close to two FP’s representing healthy states, what
allows for the description of the very long latency phase.

Parameters k1 and k2 describe the transitions from
states A to B and from B to D. The values of two con-
stants that control the interstate transition rate from D
to H2 or A cells can be directly related to two repopula-
tion parameters in the CA model: k3 ∼ prepl, the CA rate
at which new A-cells are produced. k4 ∼ prepl ∗ pinfec ∼
10−5 takes into account the value of pinfec, the birth
probability of infected cells. Finally, the rate constants
k5 and k6 describe the transition from states H1 and H2

to A, in the contact processes discussed previously. The
allowed values of ki are such that 4 constraints must be
satisfied: k2 > k1, k5 > k1, k3 + k4 > k2, k3 > k4.
With such requirements, all the FP coordinates belong
to the [0, 1] interval. They also warrant that the follow-
ing expected relations are satisfied: A > B > 0, D < B,
prepl > pinf .

The parameter k9 denotes the diffusion coefficient of A
species, which is responsible for coupling the dynamical
evolution between different patches of the lymph node
[25, 26]. Two distinct interaction mechanisms can be de-
vised. Diffusion occurs either because infected A cells
can move, or because the HIV population, highly con-
centrated on such cells, can flow together with intersticial
liquid and reach new environments, placed at larger dis-
tances than the immediate cell neighborhood described
by a tissue patch. Since the first mechanism would re-
quire the presence of diffusion terms to describe the mo-
tion of other cell populations and the corresponding dif-
fusion coefficient would be much smaller, we adopt the

second explanation as it is much more realistic. A second
relevant issue regarding the diffusion effect of A cells is
related to the choice to adopt a non linear mechanism in-
dicated in Eq.(1). A simpler linear description, in which
∇2A is not multiplied either byH1 orH2 could, in princi-
ple, also be used. However we think the non-linear term
is more realistic, as it requires that the diffusive spread-
ing of infection to new cells occurs only in the presence of
H1 or H2 healthy cells. On the other hand, the simpler
linear assumption leads to non physical situations, pre-
dicting that infected A cells continue to replace patches
where the population of H1 and H2 cells have already
vanished. This can only occur if they replace B and D
cells, what is not a valid step in our model. We also call
the attention that diffusion effects do not include cells B.
Indeed, these cells are in the last stage of infection and
the infection proceeds by a 4-th order contact process.
Since it is much less efficient in the infection propaga-
tion than that provided by A cells, we decided to make a
simpler model by avoiding including a highly non-linear
diffusion-like term.

III. RESULTS

a. Choice of parameter values In the previous sec-
tion we discussed the meaning of all 11 parameters in (1).
The actual values of k4 = 10−5week−1, p = 1, n = 4 and
τ = 4week were directly obtained from the CA model
[17]. We also indicated that, in order to describe clini-
cal observations, the values of several parameters must
obey some bounds. They reduce the region in parameter
space where useful parameter set should be searched for.
Reference [19] reports a number of different time evo-
lution patterns that can be found for the much simpler
ODE system. In particular, it has been reported the ex-
istence of a region in the parameter space such that the
corresponding solutions show the three distinct phases
and different time scales of the HIV infection. Herein we
take profit of this information and select specific param-
eter values within the same same region that also lead
to such pattern. When non zero values of k9 are consid-
ered and non uniform initial conditions are selected, we
obtain many distinct spatial patterns that will presented
latter in this section. The choice we make, however, is
somewhat distinct from that used in [19], although it also
satisfy the same bounds stated before.

b. Homogeneous, time independent solutions To
better discuss the space-temporal solutions of system (1),
in particular their slow and fast time evolution phases,
it is important to understand the properties of its ho-
mogeneous, time independent solutions. Homogeneous
solutions result when we use uniform initial conditions.
In such case, independently of the value of k9, the solu-
tions do not depend on −→r . In fact, they coincide with
those of an ordinary differential equation (ODE) system,
which is obtained if we set k9 = 0 in (1). The FP solu-
tions of the corresponding ODE are obtained by setting
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all time derivatives to zero. A thorough analysis of the
FP’s properties has been presented in a previous work
[19], so that we will limit ourselves to enumerate their
main features.
System (1) has three FP solutions with clear meanings:

two of them, FP0 = (1, 0, 0, 0, 0) and F̂P0 = (0, 1, 0, 0, 0),
obviously describe the states where all CD4+T cells are
healthy. The third one, FP1 = (0, h2, A,B, d), is asso-
ciated to a steady state in which the organism keeps a
fixed proportion of infected CD4+T .
The linear stability analysis easily shows that the

healthy states FP0 and F̂P0 are unstable both for τ = 0
and τ > 0. FP0 can only be reached if the initial con-

dition is h1=1. F̂P0 has at least one repelling manifold
associated with a positive real eigenvalue of the Jacobian
matrix M(λ)=det(J − λI)=0, but it can be reached fol-
lowing trajectories that converge to it along the direction
of its attractive eigenvectors.
The steady stated described by FP1 is stable for any

value of τ , but this parameter strongly influences the
dynamics of the trajectory in its neighborhood. We find
that the trajectory decays to FP1 at a slower rate if τ >
0.
The dependence of the attracting properties of FP1 on

q and τ is such that, when they increase, the dynamics
in the phase space region close to FP1 slows down. For
instance, when τ > 0, the real part of the attracting
eigenvalues to FP1 may be reduced by a factor ∼ 10
in comparison to its value when τ = 0. Even so, the
increase in the time-scale of the latency phase is much
larger than such factor. This effect can be accurately
described by the flow of the system through regions of
very slow dynamics, which can be found in the attracting

manifold of F̂P0. The flow through such region is also
controlled by the time-delay terms in (1).
c. Spatiotemporal evolution The system (1) was nu-

merically integrated using a finite difference method,
where the time dependence has been treated by a fourth-
order Runge-Kutta code adapted to include time-delay
effects and the Laplacian operator is approximated by
a first order scheme. For this purpose, the effec-
tive diffusion coefficient used in the numerical integra-
tion is given by k9 = k9(δt/(δx)

2), where δt and δx
set the finite time and length scales. We fixed the
value δt = 1/200 week and performed the integration
of system (1) for a fixed square sample of unit area
L2 = 1 but different grid sizes δx. This way, changes
in δx induce a correction in the value of k9 in or-
der to hold k9 fixed. The adopted initial conditions
(H1,0(

−→r ), H2,0(
−→r ), A0(

−→r ), B0(
−→r ), D0(

−→r )) intend to re-
produce the typical start phase of the infection, with
a small viral load on CD4+T cells. Therefore, we set
H2,0(

−→r ) = B0(
−→r ) = D0(

−→r ) = 0, ⟨A0⟩ ∈ [0.01, 0.10] and
⟨H1,0⟩ ∈ [0.9, 0.99]. We adopt periodic boundary condi-
tions throughout this work.
As already mentioned, the choice of uniform initial con-

ditions results in that the thyme tissue follows a time
evolution with no spatial modulation, which is equiva-

0 200 400 600 800

0.0

0.2

0.4

0.6

0.8

1.0

h
1
+

h
2
, 
A

+
B

time (days)

FIG. 1: Time evolution of healthy and infected CD4+T cells
predicted by model (1). For uniform initial conditions, which
correspond to the solution of an ODE system, squares and cir-
cles represent, respectively, H1+H2 and A+B cell types. For
non-uniform case, space average values for H1+H2 and A+B
cells are indicated by dashed and dotted lines, while error bars
indicate the variance. Used parameter values, that satisfy
the bounds discussed in Section II, are: k1=0.163, k2=0.228,
k3=0.650, k4=3.25×10−5, k5=0.650, k6=0.169, n=4, p=1,
q=1.15. For the ODE solution, H1,0=0.95, A0=0.05. For
the non-uniform conditions, A0 = 0.05 except for a small
square ate the center of the lattice where it assumes the value
A0 = 0.06.

lent to that one obtained by the ODE model [19]. For
non-uniform initial conditions the Laplacian operator in-
duces the formation and evolution of spatial patterns.
The importance of the time delay terms is confirmed by
its influence in the patterns shown in Fig. 1, where we
show the time evolution of space averaged values of the
model variables, with τ = 4, when uniform (ODE) and
non-uniform initial conditions are considered. The time
evolution pattern is characterized by a primary infection
(time scale ∼ a few weeks), followed by a latency phase
[1, 29] with a much larger time scale (∼ years). After
such phase, the number of healthy cells decay to much
smaller values, what is interpreted as the AIDS phase,
since the low immunity opens the door for opportunistic
infections. The results for the ODE indicate that, for a
specific set of parameter values the model is able to pro-
duce a time evolution pattern comprising three different
phases: the primary infection, a long time-scale latency
phase, and the final stage that can be associated with
the AIDS onset. Irrespective of the other parameter val-
ues, all variables rapidly decay towards FP1 when we set
τ = 0. In such case, the main features displayed in Fig.
1 disappear: the long latency phase vanishes and a di-
rect switch from the primary infection to the AIDS phase
occurs within a few weeks.

The ODE results in Fig. 1 were obtained forA0 = 0.05.
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FIG. 2: Panels (a), (b) and (c) show three spacial patterns
for the fraction of healthy cell population H1,0 + H2,0 at
t1 = 40, t2 = 200 and t3 = 500 days formed on a patch of
thyme tissue. The inhomogeneous initial conditions consist
of larger amount of infected cells in the center of a square
lattice. The dynamic evolution depends on the value of the
diffusion coefficient k9 (here 2 × 10−4). Independent color
codes are used for each panel. Despite the fact that fluctu-
ations almost disappear during latency phase, they are able
to increase largely during the approach to the HIV phase. In
panel (d) we illustrate, for t = t3, that the pattern for the
infected cell population (A+B) is highly anti-correlated with
that for the healthy one (H1,0 +H2,0).

The resulting trajectories have a smaller latency if the
initial virus load is increased while, if A0 decreases, the
latency increases and the solution eventually reaches the
situation of permanent cure. The effect of a very simple
non uniform initial conditions is also displayed in Fig. 1.
There we show the effect of starting with the larger value
A0 = 0.06 at the a small square in the center of the sam-
ple. Although this is an unrealistic conditions, it helps
us to understand how the disease spreading depends on
non-uniform conditions. The resulting effect is to reduce
the latency phase with respect that we obtained for the
ODE with A0 = 0.05. The same effect is obtained if the
rest of the cells outside small square is such as to lead to
a permanent cure. This result indicates that the coupling
mediated by k9 is able to contaminate the whole thyme
tissue. We postpone to the next paragraphs the influence
of the k9 value on the pattern formation.

In Fig. 2 we show three snapshots of spatial patterns
corresponding to the sumH1,0+H2,0 for t1 = 40, t2 = 200
and t3 = 500 days, as indicated by arrows in Fig. 1. The
last panel draws the space dependence of A+B for t3 =
500. The results illustrate how the more rapid dynamics
in the central area spreads over the whole tissue. Note
that different color codes are used in each panel. During
the latency phase the differences in cell population are
minute across the tissue. After this phase, the limits
of the color codes are far apart, an effect that is also
reflected in the size of the error bars in Fig. 1. However,
as the solution becomes globally attracted to the FP1,
differences in cell population are reduced again as t → ∞.
Finally, panel (d) illustrates that H1+H2 and A+B are
strongly anti-correlated and complementary so that, for
the majority of for all purposes, it is sufficient to draw
just one of the graphs.

Once we have illustrated the kind of possible effect
resulting from a particularly ordered inhomogeneous ini-
tial conditions, we consider now H1,0(

−→r ) = ⟨H1,0(
−→r )⟩+

αη(−→r ), where η(−→r ) represents a random number in the
interval [−1, 1] and α is the amplitude of fluctuations
around the averages values ⟨H1,0⟩. In such random con-
figurations, we consider A0(

−→r ) = 1 − H1,0(
−→r ), so that

⟨H1,0⟩ + ⟨A0⟩ = 1. Let us briefly mention that another
possible choice of initial conditions is to choose values of
H1,0(

−→r ) to be only 0 or 1, with prescribed probabilities
such that the pre-selected values for ⟨H1,0⟩ and ⟨A0⟩ are
obtained. This procedure, however, is more suitable to
be used when working with discrete valued variables, as
in the CA model [17]. In the adopted choice, the ini-
tial virus load in different patches of thyme tissue is the
coarse grained equivalent to a random assignment of in-
fectious cells in the CA description.

The random choice of initial conditions makes it more
evident that the different time scales in the three phase
time evolution influence, in largely distinct ways, the spa-
tial pattern formation. In other words, the relative mag-
nitude of k9 with respect to the other time scales present
in the model plays a crucial role in the propagation of
non-uniformities on the thyme tissue. Depending on this
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value, a non-uniform initial state can lead to a homo-
geneous HIV distribution in any of the quoted phases,
i.e., already in the primary infection, during the latency
phase, or only after AIDS onset. For a typical three-
phase evolution pattern shown in Fig. 1, we have no-
ticed that the longest and largest influence occurs when
k9 < 10−3. For values of k9 of this order of magnitude
or larger, the Laplacian terms contribute to a very rapid
reduction of the difference in HIV infected cells between
the neighboring patches of the thyme tissue. This can be
illustrated by the pattern snapshots in Fig. 3 and time
evolution curves in Fig. 4, for the same parameter val-
ues used in Fig. 1, while initial conditions are based on
⟨H1,0⟩ = 0.95 and α = 0.03.

In the former one, we show snap-shots of H1 + H2

for different values of time, when k9 = 2 × 10−4. The
panels at t1 = 10, t2 = 100, t3 = 400 and t4 = 600 days
were selected in such a way as to illustrate the spatial
pattern in the different phases of the infection course. It
is important to observe that each panel has color codes
of its own, which is affected also by the amplitude range
∆.

The first panel, when t1 = 10 corresponds to the pri-
mary infection, still suffers the influence of the random
initial conditions. The amplitude of fluctuations is larger
than that at t = 0 and this will prevail until the short
before t2 = 100, when system is about to move into the
second phase (latency). The pattern is much more uni-
form than that at t1 = 10, although no clear target can be
identified. The fluctuations measured by ∆ are minute,
due to the fact that the system is globally attracted to

the region of very slow dynamics close to F̂P0. The
panel at t3 = 400 illustrates the behavior after the sys-
tem enters the third phase of the infection. Two targets
in phase opposition are clearly recognizable. They surely
have evolved from the still unformed intermediate pat-
tern at t2 and the fluctuations are very large. The same
spatial modulation will be present for all values of t, as
illustrated at t4 = 600 in panel (d). The fluctuations
are smaller than in the previous panel, a tendency that
is observed if larger values of t are considered. Indeed,
as FP1 is the globally attracting set, it turns out that
∆ decays to 0 as t → ∞. The panels suggest that the
system evolves from random initial conditions towards a
robust stationary wave pattern, the modulation of which
is strongly dependent of the phase in which the system
is found.

Let us now discuss the time evolution of the space av-
eraged values of the variables shown in Fig. 4. There
we recognize several characteristic features of the uni-
form time evolution patterns exhibited in Fig. 1. The
spatial dispersion of the variables (σ), indicated by error
bars, are directly related to the range of variation ∆ of
the color codes used in Fig. 3. We notice that they are
strongly reduced whenever the system transits through a
a close neighborhood of the FP’s in phase space.

In Fig. 4 we can also appreciate the influence of k9
on the solutions of system (1), keeping fixed the same
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FIG. 3: Four spacial patterns for the fraction of healthy cell
population H1,0 +H2,0 at t1 = 10 (a), t2 = 100 (b), t3 = 400
(c) and t4 = 600 days (d) resulting from random inhomoge-
neous initial conditions, for the same parameter values used
in Fig.2, ⟨H1,0⟩ = 0.95 and α = 0.03. At early stages, the pat-
tern reflects the initial randomness. Such influence lasts until
the beginning of latency phase. During its long duration, fluc-
tuations are minute as in Fig. 2. Despite this, a small number
of large coherent patches, with much larger amplitudes and
out of phase, develop in the third phase where AIDS sets in.
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FIG. 4: Time evolution of fluctuation amplitudes σ for dif-
ferent values of k9 = 2 × 10−4 (a) and 2 × 10−3 (b). Solid
and dashed lines indicate H1,0+H2,0 and A+B, respectively.
For the sake of a better visualization, the error bars (value
of σ) have been amplified by a factor 5. Minute fluctuations
during the latency phase do not avoid the development large
fluctuations when k9 is small. In (b), the large value of k9
avoids the development of any appreciable fluctuation.

set of parameters used in the previous figures. The re-
sults for k9 = 2 × 10−3 (Fig. 4(b)) indicate that the
range of variation in the primary infection are consider-
ably smaller than those for k9 = 2 × 10−4 (Fig. 4(a)).
As for the previous value of k9, the error bars in Fig.4
show that the fluctuations are much larger during the
primary infection than during the latency phase, when
they becomes minute. However, a major difference to
the previous values of k9 is that error bars remain very
small during the whole phase of AIDS onset. This indi-
cates that, for practical purposes, the infected CD4+T
population is uniformly distributed over the thyme tis-
sue. The same situation is observed for still larger values
of k9.
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FIG. 5: Dependence of fluctuation size and latency duration
on k9, ⟨H1,0⟩ and α. In Figs. 5(a)-5(c), solid line, dashes
and dots correspond to k9 = 2× 10−4, 2× 10−3 and 8× 10−3.
The displayed curves, obtained when α = 0.03, show that
the latency increase with ⟨H1,0⟩. When ⟨H1,0⟩ = 0.95, The
influence of k9 on latency size is enhanced. Otherwise, k9
influences overall the fluctuation amplitudes. In Figs. 5(d)-
5(e), when α = 0.01, solid line and dashes correspond to k9 =
2×10−4 and 2×10−3. Fluctuations are reduced with respect
to Figs. 5a-c. Latency size are almost insensitive to changes in
α when ⟨H1,0⟩ = 0.94. However, when ⟨H1,0⟩ = 0.95, latency
increases if α is reduced.

Regarding the temporal evolution of average values,
the results in Figs. 4(a) and 4(b) also illustrate that the
value of k9 influences the duration of the latency phase
in a quite complex way. The latency duration is reduced
when k9 is small, but it grows and becomes fairly con-
stant when this parameter increases. The reason for such
behavior is that, due to small coupling among the thyme
patches, cells enter the latency phase with distinct virus
load. Those with a slightly larger amount of virus (A and

B cells) will leave the neighborhood of F̂P0 at earlier
time. This triggers the increase of infection of the neigh-
boring patches and reduces the latency phase. For larger
values of k9, the more infected cells that could trigger the
early leave of the latency phase have had their virus load
distributed over the whole tissue. They become much
strongly bounded to the majority of cells that are able
to resist to the attraction of FP1.
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Besides the displayed dependence on the value of k9,
the fluctuations and the duration of latency phase are
influenced by the initial virus load ⟨H1,0⟩ and initial ran-
domness α. In Fig. 5, we show, for H1+H2 only, results
obtained when H1,0 = 0.94, 0.95 and 0.96 (for the same
value α = 0.03), as well as when H1,0 = 0.94 and 0.95
for α = 0.01. The reduction of latency phase for smaller
values of ⟨H1,0⟩ = 0.94 is in accordance with the ODE
solution when the same parameter values are considered.
The value of k9 continues influencing the side of fluctu-
ations in the third phase, but has much less effect on
the latency duration as compared when ⟨H1,0⟩ = 0.95.
The infinite latency phase, equivalent to complete heal-
ing, observed when ⟨H1,0⟩ = 0.96 also agrees with the
ODE result. It is important to observe that fluctuations
in the local initial values of H1,0 are not sufficient to de-

viate the global behavior from being attracted to F̂P0.
The influence of the value α becomes more evident when
⟨H1,0⟩ = 0.95. In such case, the latency phase becomes
larger than those for larger values of α and corresponding
values of k9. We can observe that, despite smaller values
of fluctuations during the primary infection and latency
phase, these may still become much larger in the third
phase when k9 is small. The reasons for this dependence
is the same as discussed above. For ⟨H1,0⟩ = 0.94 and
0.95 (not shown), the latency duration is much like those
observed when α = 0.03.

IV. CONCLUSIONS

This study considers a PDE system with time delay to
describe the evolution of CD4+T cells on a thyme tissue
under the attack of HIV population. It is based on the
basic assumptions that important steps of HIV infection
is localized on the thyme tissue and uses the same set
of elementary contact steps among healthy and infected
CD4+T cell that were able to provide the evolution in CA
and ODE models. In order to emphasize the dependence
of our results on the diffusion coefficient k9 and initial
conditions (⟨H1,0⟩ and α), we presented results for very
specific values of the other parameters already present
in ODE version of the model. Indeed, with such choice,
the effect of the new ingredients of the model on latency
duration and fluctuation size are enhanced and can be
better appreciated by the reader.
The main results reported in this work refer to the

identification of the influence of non-linear diffusion
terms to describe the spread of infected cells over the
healthy tissue. We have identified that, depending on
the value of diffusion coefficient, homogeneous or stand-
ing wave patterns can be present. This dependence may
be traced back to the interplay of different time scales
present in the original ODE model. A very large diffu-
sion coefficient promotes a very effective homogeneity in
the tissue patches prior to the start of the latency phase,
where fluctuations become smeared off. On the other
extreme, small diffusion coefficients cause fluctuations

in cell population, although minute, to remain present
during the log latency phase, so that space dependent
patterns will be present during the whole course of the
infection. The interplay of different time scales, initial
fluctuation size and magnitude of diffusion coefficient in-
fluences the fluctuation size and the duration of latency
phase in a rather complex way. Finally, we would like
to stress that, due to the intrinsic difficulties to combine
space dependence with time delay effect, this work may
provide valuable insights to the study of similar mod-
els with the same kind of complex structure. Indeed, a
major part of the efforts required to find the solutions
we reported herein was devoted to write and validate a
stable numerical code for the integration of system (1).
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V. APPENDIX - LINEAR STABILITY
ANALYSIS OF FP1

The stability analysis can be performed for τ = 0 and
τ > 0. The characteristic equation M(λ) = det(J −
λI) = 0 for the eigenvalues of the Jacobian stability
matrices J defined in a neighborhood of PF1 is ob-
tained in a straightforward way. However, if τ > 0,
det(J−λI) = 0 becomes a transcendental equation, with
terms ∼ exp−λτ .

When τ = 0, we obtain analytical, yet complicated,
polynomial equation for the eigenvalues. J always has
an identically vanishing eigenvalue (λ0), which is associ-
ated to the conservation law in the number of cells. So,
in principle, it is possible to obtain analytic expressions
for all eigenvalues, provided the analytical expressions for
FP1 could be found. The analytical expressions are so
complicated that it is better to find the eigenvalues by
numerical means. Even with this restriction we can ob-
tain important quantitative as qualitative insights on the
stability properties.

The spectral properties of the system are robust, i.e.,
almost any choice of the parameters is representative of
most of the other situations. Consider what happens to
the model when the parameter values are set to k1 =
0.054, k2 = 0.0675, k3 = 0.20626500 , k4 = 0.00001, k5 =
0.143, k6 = 0.01, p = 1, q = 1.13, n = 4. For these val-
ues, FP1 = (0, 0.377306, 0.302017, 0.241613, 0.0790638).
Besides λ0 = 0, we identify λ1 = −0.21216, a cou-
pled of complex conjugate eigenvalues λ2,3 such that
Reλ2,3 = −0.04432 and λ4 = −0.03832. The eigen-
value λ1 determines a rapid decay dynamics to a two-
dimensional space, where a slow decay to FP1 described
by λ2,3 takes place. So, FP1 is a stable focus. This pat-
tern does not change for the region of interest to model
actual HIV infections.

If τ = 4 > 0, it is not possible to make definite state-
ments about the number of eigenvalues and we must re-
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sort to other strategics to identify them. We used a stan-
dard iterative Newton-Raphson (NR) procedure to look
for real and complex eigenvalues. We failed to detect
any new real eigenvalue other than λ1 and λ4. The new
values have only slightly changed with respect to those
at τ = 0. Regarding complex eigenvalues, it is possible
to find a large number of them, all of which are char-
acterized by a negative real part. Thus, all numerical
evidences we obtain indicate that τ > 0 does not change
the attracting character of the stable focus.
A very important quantitative result follows from the

numerical search for eigenvalues. Let us call λ2,3 that
pair of complex eigenvalues for which the absolute value

of their real part is the smallest one. They are relevant as
they dictate the pace at which a trajectory is attracted
to the stable focus. We find out that, for the same pa-
rameter values, Re(λ2,3) = −0.002478. Since this value
is less than 1/10 of that found when τ = 0, the stability
analysis indicates that time delay causes a much slower
decay dynamics in the neighborhood of FP1. This means
that the onset of AIDS after the latency phase is much
slower than when compared with that with τ = 0.

For more details and illustration please see reference
[19].
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