12,627 research outputs found
Limited partners' perceptions of the Central Eastern European venture capital and private equity market
Growth expectations and institutional settings in Central Eastern Europe are assumed to be favorable for the establishment of a vibrant Venture Capital and Private Equity market. Despite this, there is a lack of risk capital. We examine the obstacles to institutional investments in the region through a questionnaire addressed to (potential) Limited Partners world-wide. The respondents provide information about their perceptions of the region. The protection of property rights is the dominant concern, followed by social criteria, such as the belief in the management quality of local people, and the lacking size and liquidity of the Central Eastern European capital markets. However, Limited Partners regard the growth expectations as attractive, and those with exposure in Central Eastern Europe are satisfied with the historical risk and return ratio, they have a good knowledge of the region, are attracted by other emerging regions, and they appreciate the region's entrepreneurial opportunities and the local General Partners. Overall, the region is ranked very favorable compared to other emerging regions, and especially with respect to its economic and entrepreneurial activity.Venture Capital; Private Equity; International Asset Allocation; Institutional Investors;
Allocation determinants of institutional investments in venture capital and private equity limited partnerships in Central Eastern Europe
Growth expectations and institutional settings are favorable in CEE to establish a vibrant VC/PE market. However, there is lacking supply of risk capital. We address the obstacles for institutional investments in the region via a questionnaire addressed to (potential) Limited Partners worldwide. The respondents provide information about their criteria for international asset allocation. The protection of property rights is the dominant concern, followed by the need to find local quality General Partners and by the management quality and skills of local entrepreneurs. Further, the expected deal flow plays an important role for the allocation process, while the investors fear bribing and corruption. CEE is regarded as very attractive, especially the economic and entrepreneurial activity. However, the investors are not comfortable there with the protection of their claims.Venture capital; Private equity; International asset allocation; Institutional investors;
Gilbert Damping in Magnetic Multilayers
We study the enhancement of the ferromagnetic relaxation rate in thin films
due to the adjacent normal metal layers. Using linear response theory, we
derive the dissipative torque produced by the s-d exchange interaction at the
ferromagnet-normal metal interface. For a slow precession, the enhancement of
Gilbert damping constant is proportional to the square of the s-d exchange
constant times the zero-frequency limit of the frequency derivative of the
local dynamic spin susceptibility of the normal metal at the interface.
Electron-electron interactions increase the relaxation rate by the Stoner
factor squared. We attribute the large anisotropic enhancements of the
relaxation rate observed recently in multilayers containing palladium to this
mechanism. For free electrons, the present theory compares favorably with
recent spin-pumping result of Tserkovnyak et al. [Phys. Rev. Lett.
\textbf{88},117601 (2002)].Comment: 1 figure, 5page
Size-dependent Surface States on Strained Cobalt Nanoislands on Cu(111)
Low-temperature scanning tunneling spectroscopy over Co nanoislands on
Cu(111) showed that the surface states of the islands vary with their size.
Occupied states exhibit a sizeable downward energy shift as the island size
decreases. The position of the occupied states also significantly changes
across the islands. Atomic-scale simulations and ab inito calculations
demonstrate that the driving force for the observed shift is related to
size-dependent mesoscopic relaxations in the nanoislands.Comment: 4 pages, 4 figure
Persistence of low pathogenic influenza A virus in water: a systematic review and quantitative meta-analysis
Avian influenza viruses are able to persist in the environment, in-between the transmission of the virus among its natural hosts. Quantifying the environmental factors that affect the persistence of avian influenza virus is important for influencing our ability to predict future outbreaks and target surveillance and control methods. We conducted a systematic review and quantitative meta-analysis of the environmental factors that affect the decay of low pathogenic avian influenza virus (LPAIV) in water. Abiotic factors affecting the persistence of LPAIV have been investigated for nearly 40 years, yet published data was produced by only 26 quantitative studies. These studies have been conducted by a small number of principal authors (n = 17) and have investigated a narrow range of environmental conditions, all of which were based in laboratories with limited reflection of natural conditions. The use of quantitative meta-analytic techniques provided the opportunity to assess persistence across a greater range of conditions than each individual study can achieve, through the estimation of mean effect-sizes and relationships among multiple variables. Temperature was the most influential variable, for both the strength and magnitude of the effect-size. Moderator variables explained a large proportion of the heterogeneity among effect-sizes. Salinity and pH were important factors, although future work is required to broaden the range of abiotic factors examined, as well as including further diurnal variation and greater environmental realism generally. We were unable to extract a quantitative effect-size estimate for approximately half (50.4%) of the reported experimental outcomes and we strongly recommend a minimum set of quantitative reporting to be included in all studies, which will allow robust assimilation and analysis of future findings. In addition we suggest possible means of increasing the applicability of future studies to the natural environment, and evaluating the biological content of natural waterbodies.Antonia E. Dalziel, Steven Delean, Sarah Heinrich, Phillip Casse
Three-dimensional geometry, ore distribution and time-integrated mass transfer through the quartz-tourmaline-gold vein network of the Sigma deposit (Abitibi belt, Canada)
We present a reconstruction of the three-dimensional (3D) geometry and gold grade distribution of shear zone-hosted, Au-mineralized, quartz-tourmaline veins of the Sigma deposit (Abitibi belt). Host shears and veins form a network of anastomosing, steeply dipping structures associated with smaller subhorizontal extensional veins. Our reconstruction has been carried out using the exceptionally large geological database of the mine. From this database, we extracted the geometric position, thickness and gold grades of geometrically best-defined steep veins contained in a representative subvolume of the deposit. These data allowed the 3D representation of 53 veins, which have been constructed by fitting surfaces through the geometrical data and by contouring thickness and gold grade. The geometry of the network is mainly characterized by: (i) a few large segmented veins, with sinuous and helicoidal shape, and typical vertical dimension of >100 m; (ii) a large number of smaller vertical veins, some of which splay off the steep veins with high dip angles; (iii) subhorizontal extension veins (joints) located at, or close to, the tips of steep veins. The absolute thickness of the vertically short veins is the same as that of the large veins, suggesting that they formed simultaneously, but only a few of them interconnect to form vertically continuous bodies. Patchy, vertically elongated zones of high dilation are present in the large veins, and are poorly correlated with Au-rich zones. They presumably represent former high-permeability zones of the network. The highest gold grades occur at the interconnections between the large veins and small splays or subhorizontal joints. This indicates the important role of vein interconnection for fluid flow and gold precipitation within the network. Combining the calculation of the volume of the network with the estimation of tourmaline abundance in the veins, we calculate that 2.1 × 106 m3 of tourmaline and 3.2 × 106 m3 of quartz precipitated during Au deposition
Damping by slow relaxing rare earth impurities in Ni80Fe20
Doping NiFe by heavy rare earth atoms alters the magnetic relaxation
properties of this material drastically. We show that this effect can be well
explained by the slow relaxing impurity mechanism. This process is a
consequence of the anisotropy of the on site exchange interaction between the
4f magnetic moments and the conduction band. As expected from this model the
magnitude of the damping effect scales with the anisotropy of the exchange
interaction and increases by an order of magnitude at low temperatures. In
addition our measurements allow us to determine the relaxation time of the 4f
electrons as a function of temperature
Mesoscopic mechanism of exchange interaction in magnetic multilayers
We discuss a mesoscopic mechanism of exchange interaction in
ferromagnet-normal metal-ferromagnet multilayers. We show that in the case when
the metal's thickness is larger than the electron mean free path, the relative
orientation of magnetizations in the ferromagnets is perpendicular. The
exchange energy between ferromagnets decays with the metal thickness as a power
law
Two-dimensional solitons at interfaces between binary superlattices and homogeneous lattices
We report on the experimental observation of two-dimensional surface solitons
residing at the interface between a homogeneous square lattice and a
superlattice that consists of alternating "deep" and "shallow" waveguides. By
exciting single waveguides in the first row of the superlattice, we show that
solitons centered on deep sites require much lower powers than their respective
counterparts centered on shallow sites. Despite the fact that the average
refractive index of the superlattice waveguides is equal to the refractive
index of the homogeneous lattice, the interface results in clearly asymmetric
output patterns.Comment: 16 pages, 5 figures, to appear in Physical Review
- …