254 research outputs found

    Accretion Disk Evolution With Wind Infall I. General Solution and Application to Sgr A*

    Get PDF
    The evolution of an accretion disk can be influenced significantly by the deposition of mass and angular momentum by an infalling Bondi-Hoyle wind. Such a mass influx impacts the long-term behavior of the disk by providing additional sources of viscosity and heating. In this paper, we derive and solve the disk equations when these effects are taken into account. We present a survey of models with various wind configurations and demonstrate that the disk spectrum may then differ substantially from that of a standard alpha-disk. In particular, it is likely that a wind-fed disk has a significant infrared bump due to the deposition of energy in its outer region. We apply some of the results of our calculations to the Galactic Center black hole candidate Sgr A* and show that if a fossil disk is present in this source, it must have a very low viscosity parameter (alpha<10^-4) and the Bondi-Hoyle wind must be accreting with a very high specific angular momentum to prevent it from circularizing in the inner disk region where its impact would be most noticeable.Comment: accepted for The Astrophysical Journal, AAS LaTex, 20 pages, also available at http://www.astro.umd.edu/~hfalcke/publications.html#wintercep

    Reply to "Comment on 'Gravitational Pair Production and Black Hole Evaporation'"

    Full text link
    In a recent letter, the authors presented a unified derivation of the electric Schwinger effect and Hawking radiation with an additional radiation component. The approach discloses a radial profile of black hole pair production and traces the emission back to local tidal forces which are independent of the black hole event horizon. It uses an effective action valid to second order in curvature and arbitrary order in proper time. A comment supposed an inconsistency when applying the formula to other cases, i.e. the Schwinger effect with magnetic fields and cosmological particle production. This letter points out that these conclusions are drawn from using the formula outside its range of applicability.Comment: 2 page

    Gravitational Pair Production and Black Hole Evaporation

    Full text link
    We present a new avenue to black hole evaporation using a heat-kernel approach analogous as for the Schwinger effect. Applying this method to an uncharged massless scalar field in a Schwarzschild spacetime, we show that spacetime curvature takes a similar role as the electric field strength in the Schwinger effect. We interpret our results as local pair production in a gravitational field and derive a radial production profile. The resulting emission peaks near the unstable photon orbit. Comparing the particle number and energy flux to the Hawking case, we find both effects to be of similar order. However, our pair production mechanism itself does not explicitly make use of the presence of a black hole event horizon.Comment: 11 pages, 2 figures. To appear in Physical Review Letter

    Molecular Hydrogen and Paschen-alpha Emission in Cooling Flow Galaxies

    Get PDF
    We present near-infrared spectra obtained to search for Pa-alpha and molecular hydrogen lines in edge-darkened (FR I-type) radio galaxies with bright Halpha emission in the redshift range 0.0535<z<0.15. We find that all three galaxies in our sample (PKS 0745-191, PKS 1346+26, & PKS2322-12) which are associated with strong cooling flows also have strong Pa-alpha and H_2 (1-0) S(1) through S(5) emission, while other radio galaxies do not. Together with earlier observations this confirms claims that cooling flow galaxies are copious emitters of molecular hydrogen with large H_2 (1-0) S(3)/Pa-alpha ratios in the range 0.5 to 2. The emission is centrally concentrated within the inner few kiloparsec and could come from warm (T ~ 1000-1500 K) molecular material which is being deposited by the cooling flow. We speculate that the H_2 emission could be related to the interaction between the jets and this molecular gas.Comment: ApJ Letters, in press, AAS LaTex, preprint also available at http://www.astro.umd.edu/~hfalcke/publications.html#nirga

    EVN+MERLIN Observations of Radio-Intermediate Quasars: Evidence for Boosted Radio-Weak Quasars

    Get PDF
    We present VLBI (EVN+MERLIN) observations of a sample of three low-redshift radio-intermediate PG quasars (RIQ) with flat and variable radio spectrum (III Zw 2, PG 1309+355, PG 2209+184). Their radio-to-optical flux ratio (R) is slightly lower than the average R for steep-spectrum quasars, but their radio spectral properties are those of core-dominated quasars. It was proposed previously that these sources might be relativistically boosted jets in radio-weak quasars. Our VLBI observations now indeed confirm the presence of a high brightness temperature core in all three of these objects --- two of them have lower limits on T_B well in excess of 10^10 Kelvin. Moreover, we find no ``missing-flux'' which means that basically all the flux of these quasars is concentrated in the compact radio core. As the total radio flux is already at the low end for radio-loud quasars, we can place a strong limit on the presence of any extended emission. This limit is consistent with the extended emission in radio-weak quasars, but excludes that the flat-spectrum RIQ reside in typical radio-loud quasars. The observations therefore strongly support the idea that relativistic jets are present in radio-weak quasars and hence that radio-loud and radio-weak quasars have very similar central engines.Comment: ApJ Letters, accepted for publication, 7 pages, 4 PS Figures, AASTeX, also available at http://www.astro.umd.edu/~hfalcke/publications.html#riqvlb

    A major radio outburst in III Zw 2 with an extremely inverted, millimeter-peaked spectrum

    Full text link
    III Zw 2 is a spiral galaxy with an optical spectrum and faint extended radio structure typical of a Seyfert galaxy, but also with an extremely variable, blazar-like radio core. We have now discovered a new radio flare where the source has brightened more than twenty-fold within less than two years. A broad-band radio spectrum between 1.4 and 666 GHz shows a textbook-like synchrotron spectrum peaking at 43 GHz, with a self-absorbed synchrotron spectral index +2.5 at frequencies below 43 GHz and an optically thin spectral index -0.75 at frequencies above 43 GHz. The outburst spectrum can be well fitted by two homogenous, spherical components with equipartition sizes of 0.1 and 0.2 pc at 43 and 15 GHz, and with magnetic fields of 0.4 and 1 Gauss. VLBA observations at 43 GHz confirm this double structure and these sizes. Time scale arguments suggest that the emitting regions are shocks which are continuously accelerating particles. This could be explained by a frustrated jet scenario with very compact hotspots. Similar millimeter-peaked spectrum (MPS) sources could have escaped our attention because of their low flux density at typical survey frequencies and their strong variability.Comment: ApJ Letters, in press, (AAS)LaTeX, 3 figures, available at http://www2.mpifr-bonn.mpg.de/staff/hfalcke/publications.html#iiizw2 or in a few weeks at http://www.mpifr-bonn.mpg.de/staff/falcke/publications.html#iiizw

    The 492 GHz emission of Sgr A* constrained by ALMA

    Full text link
    We report linearly polarized continuum emission properties of Sgr A* at ∌\sim492 GHz, based on the Atacama Large Millimeter Array (ALMA) observations. We used the observations of the likely unpolarized continuum emission of Titan, and the observations of C\textsc{i} line emission, to gauge the degree of spurious polarization. The Stokes I flux of 3.6±\pm0.72 Jy during our run is consistent with extrapolations from the previous, lower frequency observations. We found that the continuum emission of Sgr A* at ∌\sim492 GHz shows large amplitude differences between the XX and the YY correlations. The observed intensity ratio between the XX and YY correlations as a function of parallactic angle may be explained by a constant polarization position angle of ∌\sim158∘^{\circ}±\pm3∘^{\circ}. The fitted polarization percentage of Sgr A* during our observational period is 14\%±\pm1.2\%. The calibrator quasar J1744-3116 we observed at the same night can be fitted to Stokes I = 252 mJy, with 7.9\%±\pm0.9\% polarization in position angle P.A. = 4.1∘^{\circ}±\pm4.2∘^{\circ}. The observed polarization percentage and polarization position angle in the present work appear consistent with those expected from longer wavelength observations in the period of 1999-2005. In particular, the polarization position angle at 492 GHz, expected from the previously fitted 167∘^{\circ}±\pm7∘^{\circ} intrinsic polarization position angle and (-5.6±\pm0.7)×\times105^{5} rotation measure, is 155−8+9^{+9}_{-8}, which is consistent with our new measurement of polarization position angle within 1σ\sigma. The polarization percentage and the polarization position angle may be varying over the period of our ALMA 12m Array observations, which demands further investigation with future polarization observations.Comment: 10 pages, 6 figures, 1st referee report received and revise

    Radio Sources in Low-Luminosity Active Galactic Nuclei. I. VLA Detections of Compact, Flat-Spectrum Cores

    Full text link
    We report a 0.2" resolution, 15 GHz survey of a sample of 48 low-luminosity active galactic nuclei with the Very Large Array. Compact radio emission has been detected in 57% (17 of 30) of LINERs and low-luminosity Seyferts, at least 15 of which have a flat to inverted radio spectrum (alpha > -0.3). The compact radio cores are found in both type 1 (i.e. with broad Halpha) and type 2 (without broad Halpha) nuclei. The 2 cm radio power is significantly correlated with the emission-line ([OI] lambda6300) luminosity. While the present observations are consistent with the radio emission originating in star-forming regions, higher resolution radio observations of 10 of the detected sources, reported in a companion paper (Falcke et al. 2000), show that the cores are very compact (= 10^8K) and probably synchrotron self-absorbed, ruling out a starburst origin. Thus, our results suggest that at least 50% of low-luminosity Seyferts and LINERs in the sample are accretion powered, with the radio emission presumably coming from jets or advection-dominated accretion flows. We have detected only 1 of 18 `transition' (i.e. LINER + HII) nuclei observed, indicating their radio cores are significantly weaker than those of `pure' LINERs.Comment: To appear in the Astrophysical Journal, October 20, 200

    Overview of lunar detection of ultra-high energy particles and new plans for the SKA

    Get PDF
    The lunar technique is a method for maximising the collection area for ultra-high-energy (UHE) cosmic ray and neutrino searches. The method uses either ground-based radio telescopes or lunar orbiters to search for Askaryan emission from particles cascading near the lunar surface. While experiments using the technique have made important advances in the detection of nanosecond-scale pulses, only at the very highest energies has the lunar technique achieved competitive limits. This is expected to change with the advent of the Square Kilometre Array (SKA), the low-frequency component of which (SKA-low) is predicted to be able to detect an unprecedented number of UHE cosmic rays. In this contribution, the status of lunar particle detection is reviewed, with particular attention paid to outstanding theoretical questions, and the technical challenges of using a giant radio array to search for nanosecond pulses. The activities of SKA’s High Energy Cosmic Particles Focus Group are described, as is a roadmap by which this group plans to incorporate this detection mode into SKA-low observations. Estimates for the sensitivity of SKA-low phases 1 and 2 to UHE particles are given, along with the achievable science goals with each stage. Prospects for near-future observations with other instruments are also described
    • 

    corecore