517 research outputs found
MaterialVis: Material visualization tool using direct volume and surface rendering techniques
Cataloged from PDF version of article.Visualization of the materials is an indispensable part of their structural analysis. We developed a visualization tool for amorphous as well as crystalline structures, called Material Vis. Unlike the existing tools, Material Vis represents material structures as a volume and a surface manifold, in addition to plain atomic coordinates. Both amorphous and crystalline structures exhibit topological features as well as various defects. Material Vis provides a wide range of functionality to visualize such topological structures and crystal defects interactively. Direct volume rendering techniques are used to visualize the volumetric features of materials, such as crystal defects, which are responsible for the distinct fingerprints of a specific sample. In addition, the tool provides surface visualization to extract hidden topological features within the material. Together with the rich set of parameters and options to control the visualization, Material Vis allows users to visualize various aspects of materials very efficiently as generated by modern analytical techniques such as the Atom Probe Tomography. (C) 2014 Elsevier Inc. All rights reserved
Two-dimensional shear modulus of a Langmuir foam
We deform a two-dimensional (2D) foam, created in a Langmuir monolayer, by
applying a mechanical perturbation, and simultaneously image it by Brewster
angle microscopy. We determine the foam stress tensor (through a determination
of the 2D gas-liquid line tension, 2.35 0.4 pJm) and the
statistical strain tensor, by analyzing the images of the deformed structure.
We deduce the 2D shear modulus of the foam, .
The foam effective rigidity is predicted to be , which agrees with the value obtained in an independent mechanical measurement.Comment: submitted May 12, 2003 ; resubmitted Sept 9, 200
Ordering intermetallic alloys by ion irradiation: a way to tailor magnetic media
Combining He ion irradiation and thermal mobility below 600K, we both trigger
and control the transformation from chemical disorder to order in thin films of
an intermetallic ferromagnet (FePd). Kinetic Monte Carlo simulations show how
the initial directional short range order determines order propagation.
Magnetic ordering perpendicular to the film plane was achieved, promoting the
initially weak magnetic anisotropy to the highest values known for FePd films.
This post-growth treatment should find applications in ultrahigh density
magnetic recording.Comment: 7 pages, 3 Figure
Comparison of Different Parallel Implementations of the 2+1-Dimensional KPZ Model and the 3-Dimensional KMC Model
We show that efficient simulations of the Kardar-Parisi-Zhang interface
growth in 2 + 1 dimensions and of the 3-dimensional Kinetic Monte Carlo of
thermally activated diffusion can be realized both on GPUs and modern CPUs. In
this article we present results of different implementations on GPUs using CUDA
and OpenCL and also on CPUs using OpenCL and MPI. We investigate the runtime
and scaling behavior on different architectures to find optimal solutions for
solving current simulation problems in the field of statistical physics and
materials science.Comment: 14 pages, 8 figures, to be published in a forthcoming EPJST special
issue on "Computer simulations on GPU
The symmetric-Toeplitz linear system problem in parallel
[EN] Many algorithms exist that exploit the special structure of
Toeplitz matrices for solving linear systems. Nevertheless, these algorithms
are difficult to parallelize due to its lower computational cost and
the great dependency of the operations involved that produces a great
communication cost. The foundation of the parallel algorithm presented
in this paper consists of transforming the Toeplitz matrix into a another
structured matrix called Cauchy¿like. The particular properties of
Cauchy¿like matrices are exploited in order to obtain two levels of parallelism
that makes possible to highly reduce the execution time. The
experimental results were obtained in a cluster of PC¿s.Supported by Spanish MCYT and FEDER under Grant TIC 2003-08238-C02-02Alonso-Jordá, P.; Vidal Maciá, AM. (2005). The symmetric-Toeplitz linear system problem in parallel. Computational Science -- ICCS 2005,Pt 1, Proceedings. 3514:220-228. https://doi.org/10.1007/11428831_28S2202283514Sweet, D.R.: The use of linear-time systolic algorithms for the solution of toeplitz problems. k Technical Report JCU-CS-91/1, Department of Computer Science, James Cook University, Tue, 23 April 1996 15, 17, 55 GMT (1991)Evans, D.J., Oka, G.: Parallel solution of symmetric positive definite Toeplitz systems. Parallel Algorithms and Applications 12, 297–303 (1998)Gohberg, I., Koltracht, I., Averbuch, A., Shoham, B.: Timing analysis of a parallel algorithm for Toeplitz matrices on a MIMD parallel machine. Parallel Computing 17, 563–577 (1991)Gallivan, K., Thirumalai, S., Dooren, P.V.: On solving block toeplitz systems using a block schur algorithm. In: Proceedings of the 23rd International Conference on Parallel Processing, Boca Raton, FL, USA, vol. 3, pp. 274–281. CRC Press, Boca Raton (1994)Thirumalai, S.: High performance algorithms to solve Toeplitz and block Toeplitz systems. Ph.d. th., Grad. College of the U. of Illinois at Urbana–Champaign (1996)Alonso, P., BadÃa, J.M., Vidal, A.M.: Parallel algorithms for the solution of toeplitz systems of linear equations. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., WaÅ›niewski, J. (eds.) PPAM 2004. LNCS, vol. 3019, pp. 969–976. Springer, Heidelberg (2004)Anderson, E., et al.: LAPACK Users’ Guide. SIAM, Philadelphia (1995)Blackford, L., et al.: ScaLAPACK Users’ Guide. SIAM, Philadelphia (1997)Alonso, P., BadÃa, J.M., González, A., Vidal, A.M.: Parallel design of multichannel inverse filters for audio reproduction. In: Parallel and Distributed Computing and Systems, IASTED, Marina del Rey, CA, USA, vol. II, pp. 719–724 (2003)Loan, C.V.: Computational Frameworks for the Fast Fourier Transform. SIAM Press, Philadelphia (1992)Heinig, G.: Inversion of generalized Cauchy matrices and other classes of structured matrices. Linear Algebra and Signal Proc., IMA, Math. Appl. 69, 95–114 (1994)Gohberg, I., Kailath, T., Olshevsky, V.: Fast Gaussian elimination with partial pivoting for matrices with displacement structure. Mathematics of Computation 64, 1557–1576 (1995)Alonso, P., Vidal, A.M.: An efficient and stable parallel solution for symmetric toeplitz linear systems. TR DSIC-II/2005, DSIC–Univ. Polit. Valencia (2005)Kailath, T., Sayed, A.H.: Displacement structure: Theory and applications. SIAM Review 37, 297–386 (1995
Inter- and intragrain currents in bulk melt-grown YBaCuO rings
A simple contactless method suitable to discern between the intergrain
(circular) current, which flows in the thin superconducting ring, and the
intragrain current, which does not cross the weakest link, has been proposed.
At first, we show that the intergrain current may directly be estimated from
the magnetic flux density measured by the Hall sensor positioned
in the special points above/below the ring center. The experimental
and the numerical techniques to determine the value are discussed. Being
very promising for characterization of a current flowing across the joints in
welded YBaCuO rings (its dependencies on the temperature and the external
magnetic field as well as the time dissipation), the approach has been applied
to study corresponding properties of the intra- and intergrain currents flowing
across the -twisted grain boundaries which are frequent in bulk
melt-textured YBaCuO samples. We present experimental data related to the flux
penetration inside a bore of MT YBaCuO rings both in the non-magnetized, virgin
state and during the field reversal. The shielding properties and their
dependence on external magnetic fields are also studied. Besides, we consider
the flux creep effects and their influence on the current re-distribution
during a dwell.Comment: 13 pages, 16 figures (EPS), RevTeX4. In the revised version,
corrections to perturbing effects near the weak links are introduced, one
more figure is added. lin
Strongly linked current flow in polycrystalline forms of the new superconductor MgB2
The discovery of superconductivity at 39 K in MgB2[1] raises many issues. One
of the central questions is whether this new superconductor resembles a
high-temperature-cuprate superconductor or a low-temperature metallic
superconductor in terms of its current carrying characteristics in applied
magnetic fields. In spite of the very high transition temperatures of the
cuprate superconductors, their performance in magnetic fields has several
drawbacks[2]. Their large anisotropy restricts high bulk current densities to
much less than the full magnetic field-temperature (H-T) space over which
superconductivity is found. Further, weak coupling across grain boundaries
makes transport current densities in untextured polycrystalline forms low and
strongly magnetic field sensitive[3,4]. These studies of MgB2 address both
issues. In spite of the multi-phase, untextured, nano-scale sub-divided nature
of our samples, supercurrents flow throughout without the strong sensitivity to
weak magnetic fields characteristic of Josephson-coupled grains[3].
Magnetization measurements over nearly all of the superconducting H-T plane
show good temperature scaling of the flux pinning force, suggestive of a
current density determined by flux pinning. At least two length scales are
suggested by the magnetization and magneto optical (MO) analysis but the cause
of this seems to be phase inhomogeneity, porosity, and minority insulating
phase such as MgO rather than by weakly coupled grain boundaries. Our results
suggest that polycrystalline ceramics of this new class of superconductor will
not be compromised by the weak link problems of the high temperature
superconductors, a conclusion with enormous significance for applications if
higher temperature analogs of this compound can be discovered
High magnetic field scales and critical currents in SmFeAs(O,F) crystals: promising for applications
Superconducting technology provides most sensitive field detectors, promising
implementations of qubits and high field magnets for medical imaging and for
most powerful particle accelerators. Thus, with the discovery of new
superconducting materials, such as the iron pnictides, exploring their
potential for applications is one of the foremost tasks. Even if the critical
temperature Tc is high, intrinsic electronic properties might render
applications rather difficult, particularly if extreme electronic anisotropy
prevents effective pinning of vortices and thus severely limits the critical
current density, a problem well known for cuprates. While many questions
concerning microscopic electronic properties of the iron pnictides have been
successfully addressed and estimates point to a very high upper critical field,
their application potential is less clarified. Thus we focus here on the
critical currents, their anisotropy and the onset of electrical dissipation in
high magnetic fields up to 65 T. Our detailed study of the transport properties
of optimally doped SmFeAs(O,F) single crystals reveals a promising combination
of high (>2 x 10^6 A/cm^2) and nearly isotropic critical current densities
along all crystal directions. This favorable intragrain current transport in
SmFeAs(O,F), which shows the highest Tc of 54 K at ambient pressure, is a
crucial requirement for possible applications. Essential in these experiments
are 4-probe measurements on Focused Ion Beam (FIB) cut single crystals with
sub-\mu\m^2 cross-section, with current along and perpendicular to the
crystallographic c-axis and very good signal-to-noise ratio (SNR) in pulsed
magnetic fields. The pinning forces have been characterized by scaling the
magnetically measured "peak effect"
- …