82 research outputs found

    Cs-137 off Fukushima Dai-ichi, Japan - model based estimates of dilution and fate

    Get PDF
    In the aftermath of an earthquake and tsunami on 11 March 2011 radioactive 137Cs was discharged from a damaged nuclear power plant to the sea off Fukushima Dai-ichi, Japan. Here we explore its dilution and fate with a state-of-the-art global ocean general circulation model, which is eddy-resolving in the region of interest. We find apparent consistency between our simulated circulation, estimates of 137Cs discharged ranging from 0.94 p Bq (Japanese Government, 2011) to 3.5 ± 0.7 p Bq (Tsumune et al., 2012), and measurements by Japanese authorities and the power plant operator. In contrast, our simulations are apparently inconsistent with the high 27 ± 15 p Bq discharge estimate of Bailly du Bois et al. (2012). Expressed in terms of a diffusivity we diagnose, from our simulations, an initial dilution on the shelf of 60 to 100 m2 s−1. The cross-shelf diffusivity is at 500 ± 300 m2 s−1 significantly higher and variable in time as indicated by its uncertainty. Expressed as an effective residence time of surface water on the shelf, the latter estimate transfers to 43 ± 16 days. As regards the fate of 137Cs, our simulations suggest that activities up to 4 mBq l−1 prevail in the Kuroshio-Oyashio Interfrontal Zone one year after the accident. This allows for low but detectable 0.1 to 0.3 m Bq l−1 entering the North Pacific Intermediate Water before the 137Cs signal is flushed away. The latter estimates concern the direct release to the sea only

    Nutrient supply to anticyclonic meso-scale eddies off western Australia estimated with artificial tracers released in a circulation model

    Get PDF
    The phytoplankton distribution off western Australia in the period from April to October is unique in that high biomass is generally associated with anticyclonic eddies and not with cyclonic eddies. As the western Australian region is oligotrophic this anomalous feature must be related to differing nutrient supply pathways to the surface mixed layer of cyclonic and anticyclonic eddies. A suite of modelled abiotic tracers suggests that cyclonic eddies are predominantly supplied by diapycnal processes that remain relatively weak until June–July, when they rapidly increase because of deepening surface mixed layers, which start to tap into the nutrient-replete waters below the euphotic zone. To the contrary, we find that anticyclonic eddies are predominantly supplied by injection of shelf waters, which carry elevated levels of inorganic nutrients and biomass. These injections start with the formation of the eddies in April–May, continue well into the austral winter and reach as far as several hundred kilometers offshore. The diapycnal supply of nutrients is suppressed in anticyclonic eddies since the injection of warm, low-salinity shelf waters delays the erosion of the density gradient at the base of the mixed layer. Our results are consistent with the observed seasonal cycles of chlorophyll a and observation of particulate organic matter export out of the surface mixed layer of an anticyclonic eddy in the region

    Simulated effects of southern hemispheric wind changes on the Pacific oxygen minimum zone

    Get PDF
    A coupled ocean biogeochemistry-circulation model is used to investigate the impact of observed past and anticipated future wind changes in the southern hemisphere on the oxygen minimum zone in the tropical Pacific. We consider the industrial period until the end of the 21st century and distinguish effects due to a strengthening of the westerlies from effects of a southward shift of the westerlies that is accompanied by a poleward expansion of the tropical trade winds. Our model results show that a strengthening of the westerlies counteracts part of the warming-induced decline in the global marine oxygen inventory. A poleward shift of the trade-westerlies boundary, however, triggers a significant decrease of oxygen in the tropical oxygen minimum zone. In a business-as-usual CO2 emission scenario, the poleward shift of the trade-westerlies boundary and warming-induced increase in stratification contribute equally to the expansion of suboxic waters in the tropical Pacific

    MOMBA 1.1 - a high-resolution Baltic Sea configuration of GFDL's modular ocean model

    Get PDF
    We present a new coupled ocean-circulation–ice model configuration of the Baltic Sea. The model features, contrary to most existing configurations, a high horizontal resolution of ≈ 1 nautical mile (≈ 1.85 km), which is eddy-resolving over much of the domain. The vertical discretisation comprises a total of 47 vertical levels. Results from a 1987 to 1999 hindcast simulation show that the model's fidelity is competitive. As suggested by a comparison with sea surface temperatures observed from space, this applies especially to near-surface processes. Hence, the configuration is well suited to serve as a nucleus of a fully fledged coupled ocean-circulation–biogeochemical model (which is yet to be developed). A caveat is that the model fails to reproduce major inflow events. We trace this back to spurious vertical circulation patterns at the sills which may well be endemic to high-resolution models based on geopotential coordinates. Further, we present indications that – so far neglected – eddy/wind effects exert significant control on wind-induced up- and downwelling

    A quantitative analysis of the biological pump in the oligotrophic subtropical North Atlantic.

    Get PDF
    The oceans are by far the largest global reservoir of carbon that is available on shorter than geological timescales. Its stock exceeds by more than 50 times the atmospheric inventory of carbon dioxide, a key "greenhouse" gas. Thus it is evident that the understanding of global climate change must be accompanied with a quantitative understanding of mechanisms governing the carbon inventory of the oceans. The aim of this thesis is to improve our understanding of these mechanisms in the North Atlantic Ocean. The focus is on the oligotrophic subtropical gyre, where the magnitude and even the direction of its biotic contribution to the air-sea flux of carbon dioxide is subject to a controversy. This controversy is based on an inconsistency between estimates of biotically-effected carbon export inferred from oxygen utilisation rates in the thermocline and local measurements of turbulent nitrate supply to the surface layer. Observational data and results from an eddy-permitting biogeochemical ocean model presented here, indicate that the mismatch between nitrate supply to the surface layer and oxygen utilisation at depth is reduced by 20% if physical processes previously neglected are accounted for. The remaining 80% are ascribed to biogeochemical processes, namely nitrogen fixation and subduction of dissolved organic carbon. In addition a caveat concerning a standard method used to distinguish between physically and biotically effected air-sea oxygen fluxes is reported

    Cyanobacteria Blooms in the Baltic Sea: A Review of Models and Facts

    Get PDF
    The ecosystem of the Baltic Sea is endangered by eutrophication. This has triggered expensive international management efforts. Some of these efforts are impeded by natural processes such as nitrogen-fixing cyanobacteria blooms that add bioavailable nitrogen to the already over-fertilized system and thereby enhance primary production, export of organic matter to depth, and associated oxygen consumption. Controls of cyanobacteria blooms are not comprehensively understood, and this adds to the uncertainty of model-based projections into the warming future of the Baltic Sea. Here we review our current understanding of cyanobacteria bloom dynamics. We summarize published field studies and laboratory experiments and dissect the basic principles ingrained in state-of-the-art coupled ocean–circulation biogeochemical models

    Linking diverse nutrient patterns to different water masses within anticyclonic eddies in the upwelling system off Peru

    Get PDF
    Ocean eddies can both trigger mixing (during their formation and decay) and effectively shield water encompassed from being exchanged with ambient water (throughout their lifetimes). These antagonistic effects of eddies complicate the interpretation of synoptic snapshots typically obtained by ship-based oceanographic measurement campaigns. Here we use a coupled physical–biogeochemical model to explore biogeochemical dynamics within anticyclonic eddies in the eastern tropical South Pacific Ocean. The goal is to understand the diverse biogeochemical patterns that have been observed at the subsurface layers of the anticyclonic eddies in this region. Our model results suggest that the diverse subsurface nutrient patterns within eddies are associated with the presence of water masses of different origins at different depths
    • …
    corecore