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Abstract. The ecosystem of the Baltic Sea is endangered by eutrophication. This has triggered expensive international man-

agement efforts. Some of these efforts are impeded by natural processes such as nitrogen-fixing cyanobacteria blooms that add

bioavailable nitrogen to the already over-fertilised system and thereby enhance primary production, export of organic matter

to depth and associated oxygen consumption. Controls of cyanobacteria blooms are not comprehensively understood and this

adds to the uncertainty of model-based projections into the warming future of the Baltic Sea. Here we review our current un-5

derstanding of cyanobacteria bloom dynamics. We summarise published field studies, laboratory experiments and dissect the

basic principles ingrained in state-of-the-art coupled ocean-circulation biogeochemical models.

1 Introduction

The Baltic Sea is a shallow, brackish and semi-enclosed sea in central Northern Europe. It’s drainage basin is densely populated10

by around 84 million people. Their footprint exerts pressure on the ecosystem (Unger et al., 2013; Hannerz and Destouni, 2006).

One, particularly severe, problem is eutrophication. Antropogenic nutrients enter the Baltic Sea via rivers and air-sea fluxes

(Helcom, 2018, 2014). Starting with the first Helsinki Convention in 1974, several international environmental management

plans have been put to work; so far with varying degrees of success (e.g. Helsinki Convention, EU Marine Strategy Framework

Directive, Baltic Sea Action Plan). On the one hand the Baltic Sea is one of the best investigated and managed seas in the15

world (Helcom, 2018b) where international efforts have been successful in reducing nutrient loads considerably (Helcom,

2018). On the other hand, despite all the resource-intensive management efforts, the state of the ecosystem has not significantly

improved yet (HOLAS II core indicator report, 2017; Gustafsson et al. (2017)). One major cause is considered to be related

to sedimentary processes. Another concern are nitrogen fixing cyanobacteria blooms, which are suspected to become more

prevalent with warming temperatures.20

The ability of cyanobacteria to utilise dinitrogen, a virtually unlimited resource in air, and to convert it into bioavailable

nitrogen, links their dynamics closely to the eutrophication problem of the Baltic Sea by adding nutrients to an already over-
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fertilised ecosystem. Among researchers there is consensus that the fixed nitrogen is a major contribution to the overall nutrient

budget. Quantitative estimates range from 20 to 50% of the total new nitrogen supply (as opposed to regenerated) that is

available to the phytoplankton community (Adam et al., 2016; Gustafsson et al., 2017; Moisander et al., 2007; Vahtera et al.,

2005; Whitton and Potts, 2002; Ploug et al., 2011). There is, however, no consensus on how nitrogen fixation will affect nutrient

loads in the Baltic Sea; even though a comprehensive understanding of this entanglement is key to an efficient environmental5

management of anthropogenic nutrient loads. One argument is that a reduction of the loads will have no net effect on the

nutrient budget because cyanobacteria will compensate the reduction by fixing additional atmospheric nitrogen. A contrary

view suggests that reduced loads will decrease primary productivity because nitrogen fixation is capped and cannot fully

compensate reductions in nutrient loads. Among the reasons for a capped fixation are (1) limited availability of light which

throttles the metabolically expensive process of fixation, (2) limited bioavailability of one or several of the following elements:10

phosphorous, iron, molybdenum, (3) turbulent water movement (Moisander et al., 2002; Paerl and Huisman, 2009).

Some of the numerous studies on cyanobacteria, which we will review in this study, are motivated by concerns to run into

low-oxygen conditions; a risk that is apparently increasing because cyanobacteria favour the warming conditions that come

along with global warming (Carey et al., 2012; Paerl and Huisman, 2009; Andersson et al., 2015b). The concern is that nitrogen

fixation may boost primary production which constitutes the source of organic material, sinking to depth. Subsequent reminer-15

alisation at depth by bacteria depletes oxygen concentrations and creates large-scale hypoxic or even anoxic environments that

are lethal to fish and their fry (Elmgren, 2001; Elmgren and Larsson, 2001b; Nehring and Matthäus, 1991; Gustafsson, 2012;

Diaz and Rosenberg, 2008, 1995; Breitburg et al., 2018).

Further motivation to understand cyanobacteria dynamics in the Baltic Sea comes from some of the species’ capability to

release toxins. There is evidence that the production of cyanobacterial toxins can increase with increasing nitrogen supply20

(Gobler et al., 2016; Dolman et al., 2012). Furthermore, it has been found in cultures that toxicity peaks when growth of the

respective cyanobacteria is optimal (Lehtimäki et al., 1997). This is problematic because the toxins, can lead to mass-die-offs

of mammals, fish and filtering organism (c.f. Breitburg et al., 2018; Sipiä et al., 2001; Karlsson et al., 2005; Paerl, 2014; Hense,

2007; Hense and Beckmann, 2010; Kuznetsov et al., 2008; Mazur-Marzec et al., 2013; Stal et al., 2003). In the Baltic one of

the most relevant species, Nodularia spumigena produces the toxin Nodularin. Additional thread comes from Dolichospermum25

sp. and Aphanizomenon flosaquae, who are also able to produce toxins. In addition to toxicity, intense cyanobacteria blooms

can lead to a detrimental water clarity loss. In shallow coastal areas, this can shade benthic macrophytes, thereby effectively

reducing their growth and survival, which in turn has negative effects on invertebrates and fishes, that use macrophytes as

habitat for food and shelter (Short and Wyllie-Echeverria, 1996).

Despite the importance of cyanobacteria for the Baltic Sea ecosystem, the processes involved in the bloom formation of30

cyanobacteria are still not comprehensively understood (Hense and Beckmann, 2006). Numerous abiotic and biotic factors

promoting cyanobacteria growth have been suggested and are often controversially discussed (e.g. Unger et al., 2013). Our

present understanding of the dynamics of cyanobacteria, as summarised in biogeochemical ocean models, relies mainly on

empirical field correlations rather than on a comprehensive understanding of physiological responses to environmental condi-
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tions. These correlations, however, may well break under changing environmental conditions, thereby retarding model-based35

forecasts of the effects of potentially expensive management efforts.

In summary, deficient process understanding introduces considerable uncertainty to projections of numerical biogeochemical

models, both globally (e.g. Landolfi et al., 2018) and in the Baltic Sea (e.g. Meier et al., 2012, their Fig. 7). Even so, such

projections often support environmental management decisions - simply because superior alternatives are yet to be developed.

This study summarises knowledge about cyanobacteria dynamics in the Baltic Sea and compares this with the current state-5

of-the-art biogeochemical Baltic Sea models. Our aim is to identify knowledge gabs, thereby promoting the development

of more reliable models. More specifically, we will (1) dissect the current generation of biogeochemical Baltic Sea models

in an attempt to understand their underlying paradigms of cyanobacteria competitiveness and (2) review published studies

focussed on observations and experimental results of, and controls on the most dominant cyanobacteria species in the Baltic:

Aphanizomenon flos-aqua, Dolichospermum sp. and Nodularia spumigena (Suikkanen et al., 2010).10

We start with a comparison of five state-of-the-art model approaches in Section 2. Section 3 puts the models assumptions

into the context of published observational and experimental studies. We will end with a discussion and summary in Sections

4 and 5, respectively.

2 Current Model Approaches

In the following we compare five coupled biogeochemical Baltic Sea models in terms of their mathematical formulations and15

underlying assumptions. Our choice of 5 is motivated by picking those that represent the state-of-the-art conveyed to stake

holders, i.e. results from this class of models influence political decision making (c.f. Eilola et al., 2011; Meier et al., 2011,

2012, 2014; Neumann et al., 2012, 2002).

Four of the biogeochemical models, dissected here, are coupled to full ocean circulation models: CEMBS (Dzierzbicka-

Głowacka et al., 2013; Nowicki et al., 2015, 2016), ECOSMO II (e.g. Daewel and Schrum, 2013, 2017), ERGOM (e.g., Janssen20

et al. (2004); Kremp et al. (2007); Kuznetsov et al. (2008); Neumann et al. (2002); Neumann and Schernewski (2005, 2008);

Schernewski and Neumann (2005)) and SCOBI (e.g., Almroth-Rosell et al. (2011); Eilola et al. (2009); Meier et al. (2011b)).

In addition, we include BALTSEM which, although it is a box-model rather than a full-fledged coupled ocean-circulation

biogeochemical mode, has impacted stakeholders considerably ever since it has been developed in the early 1990s in an

attempt to support the Baltic Marine Environment Protection Commission - Helsinki Commission (HELCOM) and to develop25

the so called "HELCOM Baltic Sea Action Plan ( Gustafsson et al. (2017); Savchuk (2002); Savchuk (2012)). Specifically, we

will review the reference version of BALTSEM, as initially developed for the Gulf of Riga (Savchuk, 2002).

2.1 General model structures

CEMBS, ECOSMO, ERGOM, SCOBI and BALTSEM are all so-called mechanistic models as opposed to statistical models.

They are, essentially, a set of partial differential equations that describe the temporal evolution of so-called prognostic entities of30

relevance or interest. Typical entities of relevance are variables such as nutrient, phytoplankton and zooplankton concentrations.
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For each of these prognostic variables an equation is defined which puts their respective temporal derivative into relation with

their biogeochemical sources and sinks which, typically, are interlaced. For example, the equation for phytoplankton comprises

a sink term associated with zooplankton grazing. This sink term appears as a source in the zooplankton equation and thereby

interlaces the zooplankton equation with the phytoplankton equation.

Complexity in mechanistic models, that are based on partial differential equations, is associated to the number of explicitly

resolved prognostic variables and the number of source and sinks terms for each of the variables. Conceptual problems arise5

because there is no consensus as concerns both the number of prognostic variable nor on the mathematical formulation of

the respective source and sink terms. Typically, the respective parameters and formulations are rather ad-hoc choices which

introduces substantial uncertainty to the realism of the model dynamics. An additional, albeit related, uncertainty is associated

with the choice of model parameters: as a rule-of-thumb, each source and sink term necessitates at least one parameter. Such

parameters are typically not well constrained even though they determine the model behaviour in a fundamental way. Examples10

of these parameters are the maximum growth rate of phytoplankton and parameters which define the limiting effects of nutrient

and light depleted conditions on autotrophic growth.

All models considered here are similar in that primary production fuelled by photosynthetically available radiation generates

phytoplankton biomass which is proportional to the uptake of dissolved nutrients (BALTSEM being somewhat different here

because, by applying a variable Redfield ratio, it links nutrient uptake to carbon assimilation in a more flexible way than the15

other models investigated here). Explicitly resolved nutrients are nitrate, ammonium, phosphate (in all models considered here)

and, optionally, silicate for diatoms (BALTSEM, CEMBS, ECOSMO only). The availability of nutrients in combination with

light and (optionally) temperature determines phytoplankton growth rates.

It is common practice to group phytoplankton species into functional groups for each of which a distinct set of model param-

eters is defined. The models considered here are similar to one another in that they all differentiate between three functional20

groups with diatoms, cyanobacteria being common to all of them. As for the third group, ECOSMO, ERGOM and SCOBI

refer to it as flagellates, BALTSEM as summer species and CEMBS as small phytoplankton.

A basic concept of the current generation of biogeochemical models is generally the widespread paradigm that diazotrophic

cyanobacteria grow more slowly than ordinary phytoplankton and can, therefore, in most models only thrive when nitrogen is

no longer accessible to ordinary phytoplankton (LaRoche and Breitbarth, 2005; Paerl et al., 2016; Hense and Beckmann, 2006;25

Deutsch et al., 2007).

Sink terms which determine losses to phytoplankton abundances are designed to account for viral lysis, extracellular re-

lease and zooplankton grazing. All models considered here resolve one functional group of zooplankton, with the exception

of ECOSMO-model, which resolves two (both, micro- and macro-zooplankton). As a general rule, the model parameters as-

sociated to zooplankton growth (fuelled by grazing on phytoplankton) are tuned such that top-down control terminates the30

phytoplankton spring bloom at the right time of the year. One may argue that the representation of zooplankton is more of a

closure term than an attempt to realistically simulate zooplankton dynamics. In any case this approach calls for the definition of

additional closure or sink terms for zooplankton. These sink terms for zooplankton (biomass) typically comprise the production
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of fecal pellets, and death. Fecal pellets and dead zooplankton are the source of detritus (another prognostic variable) which

sinks to depth where it is remineralised or lost to the sediment.

Typical attachments to the generic model backbone mapped out above, are additional prognostic variables such as oxygen

and carbon (c.f. CEMBS and a later version of ERGOM (Kuznetsov and Neumann, 2013)) and a basic representations of the

sediment. These are, however, beyond the scope of this review which focusses on cyanobacteria.

In the following we will elucidate differences among the models which, even though they share a similar basic structure,5

they can feature very different sensitivities to changing environmental conditions simply due to differing details in the specific

formulations.

2.2 Growth formulation of Cyanobacteria

In this subsection, we compare the formulations of cyanobacteria growth. Special emphasis is given to the relations of

cyanobacteria growth to the respective other two functional phytoplankton groups, because these relations inherently defines10

the niche for cyanobacteria (i.e. the conditions under which they may outcompete other functional groups). Table 2 provides an

overview for biogeochemical modellers in that it lists all model parameters considered in this study. In the following we will

elaborate on the respective differences.

There is consensus among the models, that the growth of cyanobacteria is controlled by the availability of light, temperature

and phosphate. Most models assume that high temperatures accelerate the growth (Fig. 1a). The SCOBI and ECOSMO-models15

include an additional switch which shuts down cyanobacterial growth at salinities above 10 and below 11.5 psu, respectively.

Yet another level of complexity is added in SCOBI where growth necessitates oxygen concentrations above 0.1 mlO2/l with

growth gradually increasing above this oxygen threshold.

Moreover the model behaviour is imprinted by their respective mathematical formulations and several, often rather poorly

known, model parameters. All models considered here share the concept of a maximum growth rate that is multiplied by20

several other expressions that represent the external factors that limit this maximum growth capability. The actual maximum

growth rates applied (c.f., Table 3) differ considerably among the models: in CEMBS (and ERGOM) the maximum growth of

cyanobacteria is (less than) half compared to other models. Both models also assume that cyanobacteria grow, even at their

maximum, rather slow compared to the other functional groups. In the other models, these differences are less pronounced.

Figure 1 puts this comparison into perspective, by accounting for the respective modulation by the water temperature. SCOBI25

and BALSEM, are strongly affected by water temperatures: cyanobacteria grow more than twice as fast at temperatures between

12-14◦C than at temperatures below 12◦C and growth accelerates further with rising temperatures (Fig. 1a). Above 15◦C

cyanobacteria grow almost as fast as diatoms (c.f. Fig. 1b). ERGOM does also account for the effects of ambient temperatures

but the sensitivity is lower. For one, growth does never accelerate above the maximum growth rate of 0.5 day−1 (thus, in

contrast to SCOBI, ERGOMs maximum growth rate is really a maximum rate. The ERGOM-model stalls all cyanobacteria30

growth below 12◦C and sets maximum growth at temperatures exceeding≈ .19◦C. In contrast, the assumed increase in growth

with temperature is rather gradual in the CEMBS model. The ECOSMO-model does not include any temperature dependence

of phytoplankton growth. It does, however, include a strong light dependence of cyanobacteria growth which presumably has
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a very similar effect because high light levels are typically related to high incoming solar radiation and shallow surface mixed

layer depths which, in turn, are typically related to higher surface temperatures.

The maximum growth, as defined by the modulation of the maximum growth rate by the respective temperature sensitivity

is damped under nutrient and/or light depleted conditions. The models under consideration differ considerably in this imple-

mentation. In SCOBI, the limitation of growth is implemented by multiplying with several factors all of which are smaller

than one. Each factor describes the limiting effect of one resource (such as phosphate concentration or availability of light).5

The other models apply the concept of Liebig, which assumes that the limitation is set by the most depleted essential resource

rather than being the result of the combined effect of various depleted resources that potentially modulate one another.

All models considered here agree, that the growth of cyanobacteria depends on the availability of light and phosphate

while other macro-nutrients are not limiting. Phosphate limitation is implemented by using a "Michaelis-Menten formulation"

(i.e., PO3−
4

PO3−
4 +KP

). The respective Half-saturation-constant, KP , varies substantially between models (Table 3), which imprints10

different sensitivities to phosphate limitation into their respective dynamics. Among the models, ERGOM is special in that it

squares all terms (i.e. (PO3−
4 )2

(PO3−
4 )2+K2

P

) which steepens the nutrient-limitation-curve considerable, effectively setting a threshold

rather than a gradual limitation.

Other than the steepness one consequence of differing KP is, that simulated cyanobacteria reach maximum growth at very

different levels of phosphate. SCOBI and ECOSM reach full growth already at very low phosphate concentrations, while15

CEMBS and ERGOM need much higher phosphate values to reach maximum growth - higher not only compared to the other

models but also relative to their respective other functional groups.

Common to all models considered here is that the cyanobacteria are never limited by the availability of bioavailable nitrogen

(one exception being cyanobacteria below the surface in ECOSMO). The fixation of nitrogen in the absence of ammonium

and nitrate is coupled to the uptake of phosphate in all models. Except for in BALTSEM, where the cyanobacteria top up their20

intracellular nitrogen concentrations until a predefined Redfield N:P ratio is reached. This predefined ratio is constant in all

of the models with the exception of BALTSEM where it changes with water temperature, ambient N/P ratio and phosphate

concentrations.

Despite the differences among the model formulations outlined above, all models agree in that cyanobacteria have an ad-

vantage over other functional groups under nitrate-depleted conditions - if phosphate is available. This phosphate, that has no25

Redfield equivalent of bioavailable nitrogen is also referred to as excess phosphate. In summary, all models agree in that excess

phosphate is a necessary precondition for a cyanobacteria bloom.

Beside the impact of temperature and phosphorus limitation, there is consensus that the availability of light is essential to

the growth of cyanobacteria. Details, however, differ: In BALTSEM, ERGOM and SCOBI light limitation (lightlim) for all

functional groups is expressed based on an assumed optimal light level (Iopt):30

lightlim = IPAR/Iopt ∗ exp(1−
IPAR

Iopt
) (1)

IPAR denotes the incoming photosynthetically available radiation (RAR) in the respective depth layer. Iopt is set to 50 W/m2

in BALSEM and 25 W/m2 in SCOBI.
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ECOSMO and CEMBS, in contrast, assume that the light requirement for cyanobacteria is higher than for other functional

groups. This takes into account that nitrogen fixation is an energetically expensive process which has to break the dinitrogen

molecule and thus has to overcome the strongest atom to atom bond among all bonds involving two atoms. In ECOSMO a

threshold, exclusive to cyanobacteria, of 120W/m2 is, when undercut, shutting down all growth. In CEMBS the formulation of

differing light sensitivities for the respective functional groups is more complex: built on a modification (which directly includes5

a calculation of self-shading effects) of the classical approach which expresses light limitation based a PI-curve (lightlim =

1− exp(−α ∗PAR)), CEMBS prescribes different initial slopes for each of the functional groups. The lowest initial slope,

α=0.17, is prescribed for cyanobacteria while the 0.3 and 0.34 for diatoms and small phytoplankton, respectively, imprint a

higher competitiveness under low-light conditions. On a side note (which does not affect the competition between cyanobacteria

and other functional groups in each of the respective models) is that the formulations, describing light attenuation within the10

water column, differ substantially among the models: BALTSEM accounts for shading effects of autotrophs, heterotrophs

and detritus while ECOSMO only accounts for the autotrophs. In addition, the attenuation coefficients of photosynthetically

available radiation in sea water itself vary almost by a factor of 3 from one model to another.

Indirectly related to the formulation of light limitation, is the representation of cyanobacteria’s capabilities to control their

buoyancy. Some species have gas vacuoles which give them the means to move upwards to the sun-lit surface. The respective15

model formulations, however, vary considerably: In the ERGOM model cyanobacteria have an advantage over other functional

groups as they are positively buoyant. In the SCOBI the simulated cyanobacteria do not sink, while other phytoplankton does,

while in BALTSEM the sinking speed of cyanobacteria is identical to other summer species (cf., Table 3).

2.3 Loss terms for cyanobacteria

Even more uncertain than the source terms, are the sinks of cyanobacteria. The models generally assume some phytoplankton

mortality which can depend linearly and/or quadratic on the respective standing phytoplankton stocks. These fixed rates mimic

complex processes, such as bacterial and viral lysis. In most considered models these parameters differ very little among func-

tional groups (Table 4). Exceptions are BALTSEM and CEMBS: In the BALSEM-model the mortalities of the phytoplankton

functional groups follow different temperature dependencies. In the CEMBS-model the mortalities differ among functional5

groups: cyanobacteria have a slightly higher linear mortality than other functional groups, while a quadratic phytoplankton

mortality is set to zero only for cyanobacteria. Generally, these constant rates of phytoplankton mortality are set to rather small

values and thus typically receive only little attention. Even so we want to note that this is of importance because the mortality

determines the steady state solutions and, related, can drastically determine ecosystem responses to eutrophication (Löptien,

2011).10

The largest loss term, however, is typically zooplankton grazing. The knowledge and process understanding of this com-

ponent is still limited and the assumptions between models differ widely. Typically, this formulation is non-linear since the

development of zooplankton biomass depends on its biomass at the foregoing time step. Another prerequisite for zooplank-

ton growth or, rather, increase of its own biomass, is food availability. Here, the different models consider different potential

food sources and use very different additional constraints: for example, the ECOSMO-model differentiates two zooplankton15
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Figure 1. (a) Temperature dependence of the maximum growth for a) cyanobacteria and (b) for other functional groups in the five considered

biogeochemical models [day−1].

Figure 2. Maximum grazing rates in dependence of temperatures for a) cyanobacteria b) diatoms and c) other phytoplankton [day−1]. Note

that the BALTSEM model prescribes zero grazing of diatoms in autumn. The values for the ECOSMO and the SCOBI-model refer to the

product of max. zooplankton growth rate and food preference for the respective phytoplankton functional groups and the temperature effect.

The two values for the ECOSMO-model refer to their two zooplankton groups: micro- and macro-zooplankton. All parameter values refer

to the respective references provided in Table 4. Note, that the link to phytoplankton biomass differs considerably between the models and a

direct comparison of the curves is not necessarily straight forward.
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groups (micro- and macro zooplankton) and assumes that micro-zooplankton feeds on phytoplankton, detritus and themselves,

while macro zooplankton feeds additionally on micro zooplankton. In contrast, the ERGOM model assumes that their single

explicitly represented zooplankton group feeds only on phytoplankton. In ERGOM, as in BALTSEM and CEMBS, maximum

grazing rates are temperature dependent (Fig. 2), while SCOBI is the only model which assumes an oxygen dependency of

the grazing rates. A comprehensive assessment of all these grazing formulations has not been published yet and is beyond the

scope of this study. The major aim here is merely to compare those parameters and formulations which differ among functional5

groups within the models. In this respect selective grazing is of major interest. A comparison of the maximum grazing rates

of the (competing) functional groups is shown in Table 4 and Figure 2. All models assume that zooplankton has a preference

for phytoplankton and avoids cyanobacteria if possible. The magnitude of this preferential grazing is, however, unclear. Most

models assume that the preference for cyanobacteria is by factor 2-3 lower than for other functional groups. ECOSMO is an

exception with especially high food preferences. As a peculiarity, in the BALTSEM-model grazing rates depend additionally10

on the actual fixation rates, with higher nitrogen fixation rates reducing the grazing pressure on cyanobacteria.

3 Current knowledge about cyanobacteria’s biology

3.1 Growth

The growth of cyanobacteria, like other photoautotrophic organism, depends on the availability of nutrients and light and is,15

additionally, influenced by other abiotic factors, such as temperature and salinity. In the following subsections we discuss

factors impacting the growth of cyanobacteria and highlight the differences between cyanobacteria and other phytoplankton.

3.1.1 Maximum growth

Generally, cyanobacteria are thought to have slow growth rates in comparison to eukaryotic phytoplankton cells (Butterwick

et al., 2005; Hense and Beckmann, 2006; Lips and Lips, 2008; Rakko and Seppäälä, 2014; Paerl and Otten, 2013; Paerl,20

2014; Vahtera et al., 2005). This assumption is also reflected in the models (cf., Fig. 1). However, according to Reynolds

(2006) and Foy (1980), who report rather similar maximal growth rates of cyanobacteria and micro-algae, this assumption has

to be considered with some caution. Based on a study of 16 phytoplankton species (among others Aphanizomenon flosaqua

and Dolichospermum flosaqua, which are rather common also in the Baltic Sea), Reynolds (2006) states that the maximal

growth rates differ so substantially from species to species (even within functional groups) that generic statements about the25

functional groups cannot be made. The study by Foy (1980) explores 22 strains of 3 cyanobacteria genera (Aphanizomenon,

Dolichospermum sp. and Oscillatoria). He draws the conclusion that algal size and shape appear to be better predictors of

growth rates than the affiliation to a specific functional group. This statement is supported by the fact, that many cellular

functions are strongly governed by the surface area to volume ratio (Kruk et al., 2010; Lewis , 1976). Further support showing

similar results comes from Lürling et al. (2013), who tested eight different cyanobacteria and eight chlorophyte species (among30
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others Aphanizomenon gracile and Dolichospermum sp.). Table 5 and 6 summarise published maximum growth rates of the

main cyanobacteria species in the Baltic Sea, along with those of a choice of ordinary phytoplankton species. Indeed, we

find maximum growth rates differ substantially from on cyanobacteria species to another, and even among strains (Table 5).

On average however, these studies report somewhat slower growth rates for the three cyanobacteria species than, for e.g. for

chlorophytes (Table 5 and 6): For Aphanizomenon flosaquae maximal growth rates of 0.18-1.34 d−1 are reported (Foy, 1980;

Gotham and Rhee, 1981; Rhee and Lederman, 1983; Konopka and Brock, 1978; Lee and Rhee, 1997, 1999; Sommer, 1981;5

Rakko and Seppäälä, 2014; Robarts and Zohary, 1987). Dolichospermum sp. show maximal growth rates of 0.4-1.27 d−1 (Foy

et al., 1976b; Konopka and Brock, 1978; Lürling et al., 2013; Nalewajko and Murphy, 2001; Reynolds, 2006; Oh et al., 1991;

Sommer, 1981; Tang et al., 1997). Measured maximal growth rates of Nodularia spumigena range from 0.13 to 0.6 d−1 (Cirés

and Ballot, 2016; Lehtimäki et al., 1997; Sommer et al., 2006).

Maximum growth is only reached under optimal conditions that are rarely encountered in reality. In the following we explore10

the processes that inhibit maximum growth such as nutrient depletion, high light intensities and suboptimal temperatures.

3.1.2 Temperature dependence

Regarding temperature the model formulations differ widely and some models (e.g., SCOBI and BALTSEM) are based on

the assumption that cyanobacteria require higher temperatures than ordinary phytoplankton to be able to grow optimally (Fig.

1). The respective model assumptions are roughly in agreement with Butterwick et al. (2005) who report that differences15

between species appear mainly at temperatures below 10◦C and above 25◦C, when testing the growth rate of 21 species

within a temperature range between 2-35◦C. Also, Foy (1980) report, that the temperature optima of cultured Aphanizomenon

flosaquae, Dolichospermum sp. and others were similar to those of other planktonic autotrophs and Lürling et al. (2013) state

that the growth rates of cyanobacteria and chlorophytes were very similar for a wide range of temperatures.

Regarding the typical Baltic Sea species, Table 7 shows optimal temperature ranges for the growth of the cyanobacteria20

species, compared to other phytoplankton species. Summarising the respective results, Aphanizomenon flosaquae has a some-

what wider optimal temperature range than Nodularia spumigena, spanning from 16◦-31◦C (Bugajev et al., 2015; Carey et al.,

2012; Robarts and Zohary, 1987; Paerl and Otten, 2013; Degerholm et al., 2006). Temperatures which permit some growth are

considerably lower. So report Cirés and Ballot (2016), that Aphanizomenon flosaquae is able to grow from 10◦C. Üveges et al.

(2012) even measured intensive photosynthesis at 2-5 ◦ C. For Dolichospermum sp. optimal temperatures for maximal growth25

lie between 18◦ and 25◦C, but shows slow growth starting from 10◦C as reported by (Hellweger et al., 2016; Konopka and

Brock, 1978; Robarts and Zohary, 1987; Paerl and Otten, 2013). Nodularia spumigena prefers relative high temperatures for

optimal growth: 20-25circ :(Degerholm et al., 2006), while it is stated by Nordin et al. (1980), that Nodularia spumigena is

still able to grow even around 5 ◦ C.

3.1.3 Nutrient demands30

As diazotrophs are able to fix atmospheric nitrogen, bioavailable phosphorus is regarded as the essential limiting nutrient in

the Baltic Sea for diazotrophic cyanobacteria (where iron is generally sufficiently available). Note, however, that N2-fixation
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is a very energy demanding process, which has the potential to reduce the growth rates by a factor up to 2 or 3 (Hense and

Beckmann, 2006; Rhee and Lederman, 1983; Paerl et al., 2006) while too low phosphate concentrations can prevent any

growth.

Phosphate (P) is essential, i.a., for cellular synthesis of nucleic acids, membrane phospholipids, as well as for energy transfer

through tri- and bi-phosphorylated nucleotides (Degerholm et al., 2006). All models agree that the availability of phosphate

is an essential precondition for cyanobacteria growth. The models do, however, differ considerably in terms of which P con-

centrations become limiting for the growth of cyanobacteria. The respective values for the half saturation constants envelope5

a huge range from 0.05 - 1.5 mmolP/m3 (c.f., Table 3). Apart from the CEMBS model, the order of magnitude of the half

saturation constants is comparable to other phytoplankton in all the models investigated here.

Similar to this laboratory experiments also show a huge range for the half saturation constant. Except for diatoms, the Table

show that cyanobacteria can keep up with dinoflagellates and some green algae for P. Some cyanobacteria species have been

shown to feature a very high affinity for the uptake of P. This is because they are able to rapidly increase their P uptake10

rate by up-regulating two high-affinity P binding proteins and the phosphatase (Cottingham et al., 2015; Gobler et al., 2016).

Additional adjustments to low P conditions include a reduction of their overall P requirements by substituting P-containing

lipids with alternatives requiring less P. There is also evidence that cyanobacteria have relative low P requirements (Kononen

and Leppänen, 1997; Degerholm et al., 2006). Even so Moisander et al. (2007) show in field- and laboratory experiments,

that P addition typically stimulates growth and nitrogen-fixation rates of Aphanizomenon sp. and Nodularia spumigena, which15

suggests that the availability of P is limiting in the Baltic Sea (despite the low P requirements). In this context Andersson et al.

(2015a) found that Nostocales were dominating the cyanobacteria community under high total P and instead were negatively

related to total N. Paerl et al. (2016b) reminds that N2-fixing cyanobacteria dominate more often under N replete conditions,

not under high P and low N conditions. So far there is no consensus, if the concentration of P or N or the relationship of N:P is

favouring dominance of cyanobacteria.20

Again, the minimum P-requirements are species dependent: Aphanizomenon flos-aqua seems to have somewhat higher P

demands and literature values for the half saturation constant range from 1-2.5 mmolP/m3 (Degerholm et al., 2006; Gotham

and Rhee, 1981; Healey at al., 1973). Olofsson et al. (2016) report, that in the Baltic Sea P concentrations of 0.04 mmolP/m3

can limit Nodularia spumigena growth. Degerholm et al. (2006) indicate half saturation constants of 1-1.7 mmolP/m3 for

Nodularia spumigena (Table 8). For comparison, e.g., Reynolds (2006) report much higher values up to 5.24 mmolP/m3 for25

some green algae while the investigated diatoms seem to have rather low P-demands. The respective half saturation constants

for diatoms in Table 8 range from 0.12-1.72 mmolP/m3 (Fuhs, 1972; Werner, 1977; Holm and Armstrong, 1981; Tarutani

and Yamamoto, 1994).

An interpretation of these facts is complicated by the ability of cyanobacteria to access dissolved organic phosphorus (DOP)

besides DIP. Phosphate (PO4
3−) is the dominant form of DIP in natural waters and directly bioavailable for plants. In contrast,30

DOP is an integral part of the marine organic matter pool. DOP exists in a variety of forms which result from death and

autolysis of organism, decomposition and excretion. Phosphorus esters (75%) and phosphonates (25%) are the two dominant

forms of oceanic DOP (Clark et al., 1998). Not all phytoplankton possess alkaline phosphatase and can use DOP. From those,
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who are able to use DOP, the efficiency of using DOP is very different. While f.e. dinoflagellates grow well under a variety

of DOP compounds, diatoms show a much lower and more restricted DOP utilisation (Wang et al., 2011). By being able to35

use a variety of DOP compounds cyanobacteria have a considerable advantage over other phytoplankton species, which are

restricted to DIP or phosphorus esters (Degerholm et al. (2006); Dyhrman et al. (2006); Sohm and Capone (2006); Paerl (2014).

Phytoplankton, who is able to use DOP, most commonly use alkaline phosphatase (AP) to hydrolyse phosphorus esters (Lin et

al., 2012, 2016). Some phytoplankton species also have the potential to utilise phosphonates of the DOP compounds, which

are harder to extract for P (Dyhrman et al., 2006). This has been shown for many cyanobacteria species. They are able to access5

the more refractory phosphonates, as well as the semilabile phosphorus esters (Sohm et al., 2008; Orchard et al., 2010; Orcutt

et al., 2013; Whitton at al., 1991; Dyhrman et al., 2006; O’Neil et al., 2012).

In accordance with this, various studies support an efficient use of DOP by cyanobacteria species of the Baltic Sea considered

in this review. However, there are publications of conflicting results: Degerholm et al. (2006) show with their experimental work

that under limitation of DIP Dolichospermum sp. as well as Nodularia spumigena increase their alkaline phosphatase (APase)10

activity. This indicates that these two cyanobacteria species are able to use DOP for their growth. Degerholm et al. (2006)

assumed, that Nodularia spumigena’s high uptake ability for DOP, enables Nodularia spumigena to tolerate DIP-limitation

during summer months. Studies of O’Neil et al. (2012) and Vahtera et al. (2007b) support the finding of Degerholm et al.

(2006). However, in Vahtera et al. (2007b) experiments Aphanizomenon sp. was not able to use DOP. In strong contrast to

these findings is the work of Schoffelen et al. (2018). Their measurements contradict Vahtera et al. (2007b) by illustrating15

single-cell P-uptake rates with a nanoSIM (nanometer-scale secondary ion mass spectrometry). Their measurements show

that Aphanizomenon sp. acquired only 15% of its P-demand from DIP and used instead about 85% from DOP. Whereas

Nodularia spumigena’s almost exclusively used DIP for its growth even at very low phosphate concentrations in their study.

Dolichospermum sp. showed an intermediate behaviour. Note in this context, that models do generally not consider DOP as an

additional prognostic variable.20

Another factor, which is rarely considered in models (an exception is BALTSEM), is the storage capacity of DIP by

cyanobacteria. It is well known, that some cyanobacteria are able to drastically increase their intracellular P concentration

(Nausch et al., 2008; Walve and Larsson, 2007, 2010; Sohm et al., 2011) and to store excess DIP. For the Baltic Sea this has

been shown for Aphanizomenon sp. (Larsson et al., 2001). In May, after the spring bloom, Aphanizomenon sp. showed C:P

ratios around 50 ((Redfield, 1958), C:P=106:1). Nausch et al. (2009) even measured a C:P ratio of 32 after an upwelling event.25

However, Larsson et al. (2001) observed that during the subsequent build-up of biomass, P is used for growth and cellular

P-concentrations are decreasing (C:P ratios around 400). Larsson et al. (2001) concludes that growth rate of Aphanizomenon

sp. is limited by DIP availability in the Baltic Sea. Also, Raateoja et al. (2011) and Wasmund et al. (2005) share the opinion

that, despite their DIP storage capacity, additional P sources are needed to sustain the today observed cyanobacterial blooms in

the Baltic Sea.30
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3.1.4 Light limitation

It is well known that cyanobacterial and algal growth rate is significantly influenced by the combination of light intensity and

temperature (Butterwick et al., 2005). Under high light conditions, nitrogen-fixing cyanobacteria can capture more energy,

can fix more nitrogen and by this increase their growth. High temperatures in combination with prolonged exposure to a high

light intensity, on the other hand, may cause photoinhibition and induce harmful effects in algae (Ibelings, 1996). Photoinhi-

bition also occurs when phytoplankton is shifted to irradiance substantially above those to which they have been acclimatised.

Cyanobacteria, however, can modify their photosynthetic apparatus within minutes to accommodate rapid fluctuations in light5

intensity or quality.

As differences between species are, again, substantial, we summarise the following studies sorted by species (see Table 9).

For Aphanizomenon flosaquae optimum irradiance for photosynthesis are reported to be 6->33 W/m2 (laboratory and field

experiments)(Lehtimäki et al., 1997; Üveges et al., 2012). Photoinhibition for Aphanizomenon flosaquae was only found to

occur at light intensity of 99 W/m2 (Pechar et al., 1987).10

According to Eigemann et al. (2018) and Walsby and Booker (1980), Dolichospermum sp. prefers a rather low irradiance

(3.72 - 8,32 W/m2) (laboratory experiments and field experiments, based on the population peak at depth).

Several scientist tested the optimal light intensity forNodularia spumigena. They state that Nodularia spumigena grows best

at the highest light level tested (23 - 65.7 W/m2), but can grow in a wide range of light intensities 5-114 W/m2 (laboratory

experiments) (Eigemann et al., 2018; Jodlowska and Latala, 2019; Lehtimäki et al., 1997; Nordin et al., 1980; Roleda et al.,15

2008). Nordin et al. (1980) observe that very high temperatures (35◦ C) in combination with highest measured light levels

(114 W/m2) can prohibit the growth of Nodularia spumigena. Also, Jodlowska and Latala (2019) report reduced filament

concentration and reduced photosynthesis rates at a combination of high light intensities and high temperatures (30◦ C).

Noteworthy is, that Jodlowska and Latala (2019) did not find any photoinhibition of Nodularia spumigena until approximately

153 W/m2 (700µ mol photons m−2 s−1).20

3.1.5 Buoyancy

Many cyanobacteria possess buoyancy regulation mechanisms, which enables them to actively control their position in the

water column (Visser et al., 2016). Three of the respective control mechanisms are associated to internal buoyancy control: (1)

they can modify the rate of gas vesicles being synthesised (Kromkamp and Konopka, 1986; Konopka et al., 1987), (2) they

can change their cell ballast by storage carbon which is produced by photosynthesis (mainly carbohydrates and proteins), (3)25

under prolonged irradiance and high photosynthesis rates the intracellular turgor pressure in some species can increase, which

leads to the collapse of gas vesicle. An additional mechanism, related to Stoke’s drag, is (4) colony size, with bigger colonies

accelerating stronger in response to buoyancy changes.

Vertical mobility can be beneficial for cyanobacteria. E.g., it was suggested that cyanobacteria sink downwards to take up

nutrients from deeper waters (Cottingham et al., 2015; Konopka et al., 1987; Paerl, 1988) or to avoid harmful irradiance levels.30

Ganf and Oliver (1982) show, that cyanobacteria in shallow waters (Dolichospermum spiroides, Microcystis aeruginosa) are
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able to migrate sufficiently up- and down the water column to reach nutrient rich water despite substantial density barriers.

Also, cyanobacteria can migrate upwards or downwards to reach an optimal level of irradiance for photosynthesis (Whitton

and Potts, 2002; Ibelings et al., 1991; Walsby et al., 1997; Walsby and Booker, 1980). Thus, vertical migration might give

them a crucial advantage against their competitors. On top of the euphotic zone, cyanobacteria are able to maximise their

photosynthesis and nitrogen fixation and additional they can shade their potential competitors. E.g. Nodularia spumigena is

adapted to very high irradiation levels and floats typically close to the water surface. Also, due to their buoyancy cyanobacteria5

don’t face the risk to sink out of the euphotic zone like other phytoplankton.

The ability to migrate depends on size and morphology. Some cyanobacteria, like Synechococcus sp. (without gas vesicles)

can only migrate a few cm per day - while others can float several meters. Large colonies with plenty of gas vesicles can

undertake large diurnal distances in the vertical.

Below shown are the floating velocities separated by the studied cyanobacteria species of the Baltic Sea. Also, the listed10

studies are summarised in Table 9.

For Aphanizomenon flosaquae very different floating velocities of 3.5-51.8 m/d−1 (Adam, 1999; Reynolds, 2006; Walsby

et al., 1995) were measured. Walsby et al. (1995) also observed, that the floating velocities of Aphanizomenon flosaquae vary

depending on light conditions, with higher velocities under low light.

In comparison Dolichospermum sp. is assumed to float much slower, as it does not form aggregates (Stal et al., 2003).15

Accordingly, Walsby et al. (1995) report respective floating velocities of 0.1-0.3 m/d−1 for Dolichospermum sp.. Note in this

context, that Dolichospermum sp. occurs mainly at a depth 5-10 m depth.

In the Baltic Sea Nodularia spumigena tends to float to the sea surface and there is no evidence for large changes in floating

velocities under varying light conditions (Adam, 1999). Recorded floating velocities range from 35-45.7m/d−1 for Nodularia

spumigena colonies (Adam, 1999; Walsby et al., 1995).20

When considering the above numbers, however, one has to take into account that changes in buoyancy by gas vesicles is

not a very fast process. The formation of gas vesicles takes generally more than a day (Oliver, 1994) and is a highly energetic

process (Hense and Beckmann, 2006). It also requires nitrogen (Brookes et al., 2001; Klemer et al., 1982) and under phosphorus

limitation the formation of gas vesicles is even slower (Konopka et al., 1987; Brookes et al., 2000). Some cyanobacteria possess

rather rigid gas vesicles. Species from the open Baltic Sea are observed to have relatively strong gas vesicles, while inshore25

populations have generally weaker gas vesicles. According to (Sellner, 1997), the strong gas vesicles of Nodularia spumigena &

Aphanizomenon flos-aqua can even survive mixing down to 90 m depths. Cyanobacteria might, however, lose their buoyancy

due to decreasing temperatures in autumn (Carey et al., 2012). Generally, colder water temperatures lead to a reduction in

photosynthetic and respiratory rate and a much lower protein synthesis. Instead, glycogen is accumulated. This carbohydrate

ballast results in the sinking of cyanobacterial cells (Visser et al., 1995; Thomas and Walsby, 1986).30

3.2 Loss Terms

There are several possibilities to die for cyanobacteria cells: cell death can be caused by necrosis by adverse environmental

conditions, such as insufficient light, nutrients or temperature or by a programmed cell death (PCD) (Franklin, 2013). Cells can

14

https://doi.org/10.5194/bg-2020-151
Preprint. Discussion started: 19 May 2020
c© Author(s) 2020. CC BY 4.0 License.



be infected by fungi, undergo viral lysis (Munn, 2011) or can be grazed by a diverse selection of zooplankton (Franklin, 2013).

The following subsections list the various causes for cyanobacteria loss. Note that the biogeochemical models investigated in

this study differentiate only grazing from other causes of cell losses. For all non-grazing related losses, the models generally5

assume a fixed loss rate which depends either linearly or quadratic on abundance (c.f., Sect.2.3).

3.2.1 Unfavourable Environmental Conditions

Under unfavourable environmental conditions cyanobacteria cells are subject to an increased cell loss: e.g. Sigee et al. (2007)

report for Microcystis flosaquae at least 20%-50% senescent or dead cells by the end of summer. The necrosis of cyanobacteria

cells can be due to an injury response to harmful environmental conditions (e.g. high irradiance levels, salt stress, chemical10

perturbation, oxidative stress, phosphate limitation, iron limitation, high pH, low temperatures and low irradiance levels) (Lee

and Rhee, 1999; Sigee et al., 2007). Among the ones confirmed in the Baltic Sea are mixing events, low irradiance levels,

nutrient limitation and low temperatures (Vahtera et al., 2007a).

3.2.2 Programmed Cell Death (PCD)

In contrast to necrosis, cell death can result from an active physiological response of a cell in response to negative environmental15

conditions - a programmed cell death (PCD). There is growing evidence that PCD-like cell death can occur from unicellular

amoebae and bacteria up to higher animals and plants (Ameisen, 1996). While the existence of PCD in cyanobacteria is still

debated (Franklin, 2014), Claessen et al. (2014) describes that several lines of evidence point to the occurrence of PCD in

filamentous cyanobacteria. E.g. individual cell death of Microcystis flosaquae occurs randomly throughout the colony and is

unrelated to any infection or cell cycle (Sigee et al., 2007). Instead, the cells switch actively to PCD. Similar Trichodesmium sp.20

and different strains of Dolichospermum display typical symptoms of PCD like morphological deformations, fragmentation and

the subsequent autolysis of cells when exposed to stress (Berman-Frank et al., 2004; Ning et al., 2002). For Dolichospermum

flosaquae it was found out, that cell death is controlled by circadian rhythms (Lee and Rhee, 1999), which implies that cell

death is programmed in these organisms. Another hypothesis is, that PCD might be the result of asymmetric cell division

(Franklin, 2014). E.g. in Dolichospermum solitarium cell division always results in one large and one smaller cell. The larger25

cell act as a repository for metabolic waste, which will result into its early death, leading the smaller cell to a rejuvenation or

increased fitness. All these studies indicates that PCD is part of the cyanobacterial life in the ocean and might be an important

process in the decline of cyanobacteria blooms. Also, the cell death by PCD may facilitate biogeochemical cycling through

transfer of organic and inorganic matter (Berman-Frank et al., 2004).

3.2.3 Infections and Lysis - direct Effects30

Cyanobacteria cells can be infected by various organism, respectively entities, like fungi, bacteria or viruses. However, it is

difficult to calculate the net effect of the different infections, because there are antagonistic effects between them.

15

https://doi.org/10.5194/bg-2020-151
Preprint. Discussion started: 19 May 2020
c© Author(s) 2020. CC BY 4.0 License.



Fungi

Depending on the geographic region, the Baltic Sea resembles either a freshwater or a marine environment. The respective

salinity threshold of fungi lies around 8 PSU. Depending on this classifications, the fungi community structure typically differs

strongly. In salinities below 8 PSU fungal infections of bacteria and cyanobacteria cells are common. For instance, Mohamed

et al. (2014) show that the fungi Trichoderma citrinoviride could lyse Microcystis aeruginosa. Similarly Kozik et al. (2019)

report cell death of Dolichospermum sp. colonies due to infection by chytrid fungi.

5

Bacteria

Many bloom-forming cyanobacteria like Aphanizomenon sp., Dolichospermum sp. or Microcystis sp. are often closely asso-

ciated with other microorganisms, especially heterotrophic bacteria (Gerphagnon et al., 2015; Liu et al., 2014). It has been

reported that these prokaryotes exchange substances (organic matter, energy, oxygen, nitrogen, phosphate) (Levy and Jami,

2018), which lead to a better growth of both partners. This would be a mutualistic partnership. However, some heterotrophic10

bacteria instead use cyanobacteria cells as a food source (Gerphagnon et al., 2015; Hoppe, 1981; Paerl and Otten, 2013; Ya-

mamoto et al., 1998) and in aged Nodularia spumigena filaments an immense number of bacteria has been observed. However,

there is so far little evidence for strong lysing effects of bacteria on cyanobacteria in natural environments.

Viruses15

Viral lysis could have a much greater impact for cyanobacteria than bacterial lysis. Viruses are ubiquitous in aquatic environ-

ments. Estimates assume that virus concentrations are of more than 107-1010 viruses ml−1 (Rohwer and Youle, 2010; Paerl

and Otten, 2013; Fuhrman and Suttle, 1993; S̆ulc̆ius and Holmfeldt, 2016; Suttle, 2005; Breitbart, 2012; Zeigler Allen et al.,

2017). In the Baltic Sea, Ahrens (1971) reports up to 3.7 · 107 viruses per l−1 for the bacteria group agrobacterium (which

covers only a fraction of all bacteria). The more recent studies by Riemann et al. (2009) and Holmfeldt at al. (2010) estimate20

virus concentrations in a range from 3.0−4.9 ·107 viruses per ml−1. (For reference, concentrations of viruses in air (outdoor)

are around 36 · 101 viruses per per l−1 (Prussin et al., 2015)).

Viruses are the most abundant biological entities in the ocean and their numbers can exceed that of bacteria by about 5-10 fold

(Silveira and Rohwer, 2016; Paerl and Otten, 2013). Most of these viruses are bacteriophages (a virus that infects and replicates

within bacteria and archaea). Cyanophages are viruses that infects and replicates within a cyanobacteria. Viruses follow a25

similar distribution pattern like bacteria: with higher abundances in productive waters and lower abundances in oligotrophic

regions (Bratbak et al., 1994; Fuhrman and Suttle, 1993). Also, viruses are much more abundant in freshwater than in marine

systems (Maranger and Bird, 1995). In the Baltic Sea, virus-induced bacterial mortality is among the highest reported for

temperate aquatic ecosystems (Weinbauer and Rassoulzadegan, 2003).

The importance of viruses in controlling cyanobacteria abundances is, however, poorly understood. There are only few30

and mostly observational evidences for the impact of viruses on cyanobacteria. A wide range of 20-50% has been estimated

for daily marine bacteria cell mortality due to viral lysis (Suttle, 2005; Fuhrman, 1999; Breitbart et al., 2007). Other studies
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indicate, that viral induced bacterial mortality might be an important factor, controlling bacterial, algal and cyanobacterial

abundances (Wommack and Colwell, 2000; Bratbak et al., 1993; Fuhrman and Suttle, 1993; S̆ulc̆ius and Holmfeldt, 2016).

This mortality most likely exceeds the effect of zooplankton grazing, especially in nutrient-rich, brackish waters like the Baltic

Sea (Paerl and Otten, 2013). In a mesocosm experiment in the Baltic Sea, Bratbak et al. (1992) estimate that viral lysis leads to

a reduction of up to 72% of cyanobacterial cells per day. However, in Australia it was shown, that cyanobacteria cells, which

survive a virus attack, later develop a resistance against the virus (Tucker and Pollard, 2005). Still S̆ulc̆ius et al. (2015) could

show in the Baltic Sea, that growth rate of Aphanizomenon flosaquae was significantly suppressed by a virus infection. While5

lytic infections (viral reproduction cycle which results in the destruction of the infected cell) do not play an important role

when diversity of bacteria/ cyanobacteria is high, a bloom of one specific host increase the risk for lytic infections drastically

("killing the winner hypothesis")(Bratbak et al., 1994). In enclosure experiments, Simis et al. (2005) could indeed observe the

termination of cyanobacteria blooms due to virus pathogens.

In summary, ongoing research indicates that viruses could play a very important role in controlling cyanobacteria blooms10

(Weinbauer at al., 2003; Tucker and Pollard, 2005). However, there are missing precise quantitative studies to really assess the

influence of viruses on cyanobacteria in the Baltic Sea.

Infections and Lysis - antagonistic, indirect Effects

High cell turnover, due to virus lysis, has a large impact on daily nutrient recycling. Especially bacteria and flagellates benefit15

from the released nutrients from lysed cyanobacteria cells. Even cyanobacteria themselves are, most likely, able to recycle the

nutrients from lysed cells (Breitbart, 2012; Bratbak et al., 1994; S̆ulc̆ius and Holmfeldt, 2016; Hewson et al., 2004). Bratbak

et al. (1992) could show in a mesocosm experiment, that the whole bacterial and primary community could be sustained with

organic phosphorus released from lysed cells. Especially in the Baltic Sea for Nodularia spumigena, with its low phosphorus

requirements and high affinity for DOP (Degerholm et al., 2006), recycled phosphorus might be an important continuous nu-20

trient source.

Another aspect of viruses is, that viral lysis can shorten long filaments of cyanobacterial blooms. S̆ulc̆iu et al. (2017a) observed

that viral lysis changed the filament morphology of a cyanobacteria colony substantially. During the experiment the mean

filament length of the Baltic Sea species Aphanizomenon flosaquae decreased by 58%, which made the cyanobacteria more

vulnerable to grazing by zooplankton. Also, cyanobacteria have been observed to produce an exopolysaccharide matrix that25

surrounds the colony-embedded filaments as protection against grazing and viral lysis (S̆ulc̆iu et al., 2017b).

3.2.4 Grazing on cyanobacteria

Several studies suggested that there is hardly any grazing on cyanobacteria due to their toxicity, bioactive compounds that

hamper digestion, bad taste, poor content of lipids, large filamentous size and low food quality (Carey et al., 2012; Daewel and30

Schrum, 2013; Ger et al., 2016). Generally, prey morphology is thought to be one of the most important factors influencing

zooplankton grazing (Gerphagnon et al., 2015). With their large, filamentous size, most bloom forming cyanobacteria in the
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Baltic Sea are difficult to graze. The toxins produced by cyanobacteria are another obstacle for grazers as these can be lethal.

E.g. microcystin is lethal for a wide range of daphnia and copepod species (DeMott and Moxter, 1991; Ger et al., 2019).

Ciliates, however, seem to be the most tolerant grazers to microcystin.

Despite all these obstacles there is grazing on cyanobacteria. One way is that grazers can develop a certain tolerance:

especially during longer exposure to cyanobacteria, there can be a remarkable high biomass of small-bodied zooplankton

which co-exist with cyanobacteria (Bouvy et al., 2001; Davis et al., 2012; Ger et al., 2016). This coexisting can lead to

better adapted grazer species (Davis et al., 2012; Bouvy et al., 2001; Sousa et al., 2008). DeMott and Moxter (1991) found,5

that copepods & daphnias became more tolerant against toxins after exposure to toxic cyanobacteria - or better in avoiding

them. This tolerance could even be transferred to their offspring (Gustafsson et al., 2005). Sarnelle (2007) observed that high

abundances of generalist may even control cyanobacteria blooms, if zooplanctivorous fish are rare. Carpenter (1989) proposed,

that cyanobacteria may be highly vulnerable to grazing at the time of initial recruitment. Inline, Chan (2004, 2006) could show,

that zooplankton can suppress cyanobacteria blooms.10

However, while there is some grazing on cyanobacteria and grazing might be important during the start of the growing phase

and during termination of cyanobacteria blooms, worldwide and specifically in the Baltic Sea it can be observed, that under

favourable conditions, cyanobacteria can outgrow any grazing pressure easily (Walve and Larsson, 2007; Ger et al., 2016;

Sellner, 1997; Paerl and Otten, 2013). This rather low grazing pressure on cyanobacteria has a huge ecosystem impact, as,

consequently, during cyanobacteria blooms a lower proportion of the primary production is consumed by larger grazers and15

therefore not transferred to higher trophic levels. These findings are represented in the models by assuming that grazing on

diatoms or other phytoplankton is 2-4 times higher than grazing on cyanobacteria. There is, however, no consensus yet on the

exact formulation of zooplankton grazing in the current model generation and grazers are represented by a single (BALTSEM,

ERGOM, SCOBI and CEMBS) or two (ECOSMO) functional groups.

20

In the Baltic Sea a wide range of possible grazers on cyanobacteria exist. To highlight the differences between different

grazers, we discuss in the following the most abundant grazers (copepods, rotifers and cladocerans) and some grazers, which

are known to be able to exert a strong impact on cyanobacteria in other ecosystems (bivalves, protozoa). In each group their

occurrence in the Baltic Sea, their feeding mode and the known grazing pressure on cyanobacteria are presented.

25

Copepods

Among the most important and abundant grazers in the Baltic Sea are copepods (e.g. Acartia logiremis, Temora longicornis

or Centropages hamatusarexs are common in the Baltic Sea). Copepods are a group of small crustaceans and belong to the

mesozooplankton. They are able to select their food and can avoid cyanobacteria or select smaller colonies of cyanobacteria

while grazing Ger et al. (2019). One reason for their avoidance of cyanobacteria are the cyanobacterial toxins, which are lethal30

for many copepod species. Also many filamentous cyanobacteria are too large to be grazed on. In accordance with this, most

studies about copepod grazing on cyanobacteria in the Baltic Sea show their avoidance and no significant grazing effect on
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cyanobacteria (Sellner et al., 1994, 1996; Engström, 2000; Sommer et al., 2006). On the contrary, copepod-dominated zoo-

plankton communities may also facilitate cyanobacteria by praying selectively on the eukaryotic competitors (Ger et al., 2016;

Hong et al., 2013). Similar results are found by Eglite et al. (2019), who could demonstrate based on fatty acids-, amino acids-

and stable carbon isotopes analysis, that mesozooplankton obtained essential fatty acids (FAs) and amino acids (AAs) from

cyanobacteria via feeding on mixo- and heterotrophic (dino-)flagellates and detrital complexes. Overall, while copepods play

an important grazing role in the ecosystem, they will not be able to control cyanobacteria growth in the Baltic Sea (Sommer et5

al., 2006).

Cladocera

The cladocera are another group of small crustaceans which range in size from 0.2-3.0 mm (with some exceptions). While

most cladoceran species live in fresh water, eight species are truly oceanic. In the Baltic Sea the cladoceras Bosmina coregoni,10

Evadne nordmanni and Daphnia cristata are very common among others.

Cladoceran are generalists, but there is a profound difference in the methods of food collection between littoral, planktonic

and predatory cladocera species (Smirnov, 2017). Planktonic species are mostly filter feeders. However, members of the family

Bosmina are known to have a dual feeding mechanism. They have mesh-like structures for filtering but they also can grab larger

particles with their first two thorac limbs (Bleiwas and Stokes, 1985). By this, they are able to select for food items. In line with15

this, Kerfoot and Kirk (1991) demonstrate that two species of Bosmina spp. consume algal foods by size and taste. They show

preferences for small algae, bacteria and detritus (Solis et al., 2018). In contrast to this, filter feeding cladoceras consume algae

that are present in the water, as well as organic particles and bacteria. Due to their feeding method, they are not able to avoid

toxic cyanobacteria (Ger et al., 2019). Still, studies of Ismail et al. (2019) report, that cladoceras species (here Daphniidae)

were mostly feeding on small green algae cells. Filamentous cyanobacteria (Dolichospermum circinalis, Microcystis flos-aqua20

and Dolichospermum sp.) were also utilised by the grazers, but to a minor degree. In contrast to this is, that in freshwater lakes

cladoceras are among the most important grazers on cyanobacteria. Especially the large-bodied Daphnia magna (max. female

size 5 mm) is capable of suppressing filamentous cyanobacteria (Urrutia-Cordero et al., 2016). Whereas Daphnia cristata is

one of the smallest daphnia (max. female size 1.6 mm) and cannot exceed high grazing pressure on filamentous cyanobacteria

and Bosmina coregoni and Evadne nordmanni have a similar size (max. female size 1.5 mm). In summary, in the Baltic Sea25

there is an abundant number of cladocerans, mostly smaller species. In contrast to freshwater habitats, studies suggest, that

cladocerans will not be able to suppress cyanobacteria blooms.

Rotifera

Another important grazing group are rotifers. Typical species in the Baltic Sea are among others Synchaeta baltica and Ker-30

atella quadrata. They are much smaller zooplankton species than copepods and belong to the size class micro-zooplankton.

However, since the rotifers have higher metabolic rates and are considerably more abundant than crustaceans, they may be

important in the structuring of plankton communities (Gilbert and Bogdan, 2017). Also, rotifers have the fastest reproductive
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rates of any metazoans (Mironova et al., 2008) and can reproduce unisexual or bisexual. Therefore rotifers can quickly respond

to altered food supply. In the brackish waters of the Baltic Sea rotifers are a highly diverse and widely distributed group. They

are especially diverse and abundant (up to 95% of zooplankton biomass) in coastal ecosystems (Ojaveer, 2010). With increas-

ing salinity, abundance and diversity of rotifers decrease, due to the freshwater origin of this group. Furthermore, in the open

Baltic Sea, rotifers are less diverse than in the Baltic Sea estuaries (Mironova et al., 2008). Most rotifers are suspension-feeders.5

Due to their small size, their diet must be tiny as well. It mostly consists of dead or decomposing organic material as well as

unicellular microalgae, bacteria or protozoans (Mironova et al., 2008). Some species are known to be cannibalistic. Rotifers

will not graze on living filamentous cyanobacteria, due to their size. However, decaying cyanobacteria or smaller cyanobacteria

like ’Synechococcus’ can be a target for rotifers.

10

Bivalves

In general bivalves are filter feeders. However, at least some mussel species can distinguish between food particles and show

different clearance rates for different particles sizes or particles types. Another way how mussels are selecting food items is

to reject particles by discarding them into pseudofeces (Ward et al., 2004; Tang et al., 2014). Lesser et al. (1991) report, that

e.g. scallops showed lower clearance rates for toxic dinoflagellates then for three different plankton species. Regardless of the15

partial ability to select food particles, mussels are very successful grazers on cyanobacteria in freshwater lakes. E.g. population

of Dreissena spp. were able to reduce cyanobacteria in several occasions (White at al., 2014) and even prevented or terminated

cyanobacteria blooms (Gulati et al., 2008; Baker et al., 1998). In the Baltic Sea, due to its brackish water, Dreissena polymor-

pha has become a part of the Baltic coastal ecosystem in many areas. While its distribution is patchy along the coast of the

Baltic Sea (Werner et al., 2012), in the oligohaline southern and eastern coastal lagoons and inlets of the Baltic Sea Dreis-20

sena polymorpha is one of the most common species (Snoeijs-Leijonmalm et al., 2017) and could play a role in decreasing

cyanobacteria blooms in coastal areas.

Protozoa

Today we know that protozoans, such as ciliates and flagellates, are an important group of grazers on cyanobacteria (Worden25

et al., 2015). Due to their small size they mainly consume unicellular cyanobacteria. Some ciliates and amoebae however,

can engulf prey items several times their own length by breaking down trichomes or encapsulating individual cells from

cyanobacterial colonies (Ger et al., 2016). Dryden and Wright (1987) gave a great overview of grazing on cyanobacteria by

different protozoa classes. The cited studies (mostly laboratory experiments), showed dinoflagellates, amoebae and ciliates

grazing on the order Nostocales, which comprises the here studied cyanobacteria. E.g. Hoppe (1981) measures in the Baltic30

Sea, that the ciliate Nocardia sp. become the dominant species in aged cyanobacteria filaments. Nocardia sp. can cause lysis of

cyanobacteria (Hoppe, 1981). In lakes Canter et al. (1990) observed, that the cyanobacteria population crashed under grazing

pressure of the ciliate Nassula spp.. Nassula spp. has the remarkable ability to ingest long filaments of cyanobacteria by sucking

them in, spaghetti-like and coiling them intracellularly (Reynolds, 2006). Similar results reported Boyer et al. (2011), that while
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microzooplankton (among others ciliates) community did not graze on filamentous cyanobacteria during the summer bloom,

by autumn, as the cyanobacteria bloom was declining, microzooplankton grazing rates were high particular on Aphanizomenon

flosaquae. Cook (1976) report that the amoebae Mayorella were actively and exclusively grazing on Dolichospermum cells,

reducing within 3 days the cyanobacteria bloom into a milklike surface film. Also, Reynolds and Walsby (1975) observed a

rapid collapse of a Dolichospermum circinalis bloom after being attack by a large population of ciliates Ophryoglena atra.5

These studies show, that protozoans have the potential to exceed a strong grazing pressure on cyanobacteria. In the Baltic

Sea the above mentioned species Mayorella sp., Ophryoglena sp. and Nassula sp. do occur. Their importance still has to be

examined.

3.3 Others10

3.3.1 Salinity constrains

The Baltic Sea features a wide range of salinities, ranging from 15-25 PSU in the northwestern-most part of the Baltic to 2-3

PSU in the Bothnian Bay. The Baltic Proper, situated in the centre, is characterised by intermediate values around 6-8 PSU.

The large spatial variance in salinity can induce large local salinity variations over time when ocean currents mix water masses

from different origins. This can decrease the local growth- and photosynthesis rates of algae and cyanobacteria, once specific15

salinity thresholds are over- or undercut and physiological stress sets in. By this means-salinity has the potential to control

the occurrence of cyanobacteria species. Salinity thresholds are set in SCOBI and ECOSMO, while the other models do not

include salinity constrains on simulated cyanobacteria. The respective assumptions in SCOBI and ECOSMO refer to regions

with extreme salinities - both extremely high and extremely low - where cyanobacteria growth is set to zero.

Field observations show that in most parts of the Baltic Sea large cyanobacteria blooms occur during summer, except in the20

relatively saline waters in the Kattegat and the Belt Sea. Thus, e.g., Rakko and Seppäälä (2014) conclude that high salinities

seem to restrict the growth of Baltic Sea cyanobacteria and estimate a threshold around 10 PSU. Low salinities, in contrast,

do not seem to restrict the growth of cyanobacteria in the Baltic Sea in general and several studies report blooms at very low

values: Wasmund (1997) relates Baltic Sea blooms to salinities between 3.8-11.5 PSU and Kononen et al. (1996) report no

significant correlation of the bloom-forming cyanobacteria in the Gulf of Finland with salinity (i.e., salinities between 3-625

PSU).

The differences between species are substantial. E.g., Lehtimäki et al. (1997) state that in the northern part of the Gulf of

Bothnia, where the water mass properties are close to freshwater, Nodularia spumigena is absent. Brutemark et al. (2015) even

stated, that salinity might be one of the main factors that explains the distribution of species in the Baltic Sea.

These statements are supported by laboratory experiments which we list in the following for the most relevant species.30

Aphanizomenon flosaquae is well known as a freshwater specie (Laamanen et al., 2002). Accordingly, Rakko and Sep-

päälä (2014) and Laamanen et al. (2002)measured rather low salinities of 0-5 PSU for optimal growth. Rakko and Seppäälä

(2014) describe this species as rather coastal, preferring less saline conditions. Inline, Lehtimäki et al. (1997) stated that Aph-
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anizomenon flosaquae is not able to tolerate salinities higher than 10 PSU. Consistently, its abundance decreases from the

northern to the southern part of the Baltic proper.

The taxa Dolichospermum originate from freshwater, with some strains adapted to brackish water (Brutemark et al., 2015).

In agreement, in the Baltic Sea the specie Dolichospermum flosaquae shows similar growth rates between 0-10 PSU and a5

strong decrease in growth rates at higher salinities (Moisander et al., 2002).

For the species Dolichospermum aphanizomenoides, Moisander et al. (2002) report a wide range of salinities, from 0-

10 PSU, which are related to similar growth rates. Dolichospermum taxa originate from freshwater, with some strains that are

adapted to brackish water (Brutemark et al., 2015). In the Baltic Sea Dolichospermum spp. can grow in salinities between

0-10 PSU, but their growth rates decrease strongly above 10 PSU (Moisander et al., 2002).10

For different strains of Nodularia spumigena a wide range of tolerable salinities were reported: the widest reported range is

0-20 PSU (Moisander et al., 2002), while Rakko and Seppäälä (2014) narrows the optimal salinity range down to 8-10 PSU.

Studies of (Lehtimäki et al., 1997), Mazur-Marzec et al. (2005) and Nordin et al. (1980) find salinity ranges in between (5-

18 PSU). Results by Moisander et al. (2002) suggest that the actual salinity range may vary from strain to strain and we15

speculate that this explains the differing findings. (Mazur-Marzec et al., 2005) also observed a significantly inhibited growth at

extreme salinities of 0 and 35 PSU. Interestingly, salinity concentration apparently affect the toxicity of cyanobacteria blooms:

Mazur-Marzec et al. (2005) report an increase of Nodularin production for Nodularia spumigena with increasing salinity

concentrations. Inline, Brutemark et al. (2015) found the highest intracellular toxin concentration at the highest tested salinity

concentrations (6 PSU) for Dolichospermum spp..20

To sum up, in most areas of the Baltic Sea, salinity is no restriction for the growth of cyanobacteria.

3.3.2 Cyanobacteria akinetes

The considered biogeochemical models do not consider the life cycle of cyanobacteria (e.g., the resting spores akinetes). A

respective approach, was, however, tested successfully in a low-dimensional setup by Hense (2007) and Hense and Beckmann

(2010). In the Baltic, all dominant bloom forming diazotroph cyanobacteria taxa are able to produce akinetes. These resting25

spores have a slightly thicker cell wall than vegetative cells and are more resistant to environmental stress (e.g. temperature,

desiccation) (Agrawal, 2009; Paerl, 2014; Kaplan-Levy et al., 2010). Some akinetes will germinate shortly after formation or

after a more or less longer maturation period. For example, akinetes of Dolichospermum sp. were able to germinate even after

a dormant phase of 64 years (Kaplan-Levy et al., 2010). Laboratory experiments indicate, that akinetes need a certain time

to mature and to reach a certain energy or nutrient level, before germination is initiated again (Hense and Beckmann, 2006;30

Kaplan-Levy et al., 2010). The dormant akinetes can act as over-wintering stadium or they can ensure the long-term survival

of the population. Different stimuli like temperature, light intensity, a low DIN/DIP ratio, sediment resuspension, salinity can

trigger germination of akinetes (Karlsson-Elfgren et al., 2004; Rengefors et al., 2004; Kaplan-Levy et al., 2010; Huber, 1985;

Sommer et al., 2006).
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Field observations and mesocosm experiments indicate, that the importance of akinetes for the main bloom-forming cyanobac-

teria taxa in the Baltic Sea differs from species to species (Sellner, 1997; Agrawal, 2009; Rother and Fay, 1977; Suikkanen et

al., 2010). For example: Aphanizomenon flosaquae seems to have a holoplanktonic life strategy (Rother and Fay, 1977; Jones,

1979; Head at al., 1999; Wasmund, 2017). It can produce akinetes, but during winter a "refuge population" of filaments can be5

observed in deeper waters (Heiskanen and Olli, 1996) even under sea ice (Laamanen et al., 2002), from which in spring/ early

summer the population will develop (Sellner, 1997; Suikkanen et al., 2010). Observations for Dolichospermum spp. are not

conclusive: In the Baltic Sea, akinete formation of Dolichospermum spp. has been documented (Olli et al., 2005). However,

Rother and Fay (1977) observed that the bulk of akinetes of Dolichospermum spp. germinated shortly after sporulation and

that the over-wintering population consist of vegetative filaments, while Suikkanen et al. (2010) stated that Dolichospermum10

spp. regularly germinated from overwintering akinetes in the sediment. Cirés et al. (2013) found a dual strategy for Dolichos-

permum spp., with major akinete production combined with pelagic overwintering filaments. Dolichospermum spp. is the least

dominant taxa of these three main bloom forming Nostocales in the Baltic Sea. The other major bloom forming taxa in the

Baltic Sea: Nodularia spumigena - seems to have a mixed life strategy. It produces akinetes that overwinter in shallow sedi-

ments (Jones at al., 1994), but Nodularia spumigena only germinated from akinetes occasionally and mainly uses trichomes15

that overwinter in the water column (Suikkanen et al., 2010). In tank experiments Nodularia spumigena only grew within water

from above the halocline, without additional input from akinetes (Wasmund, 2017).

In summary, the effect of akinetes on the extent of subsequent blooms, however, is still under discussion and difficult to

estimate. Based on field observations and literature data Kaplan-Levy et al. (2010) draw the conclusion that the contribution

of akinetes towards the bloom success of next year’s population of Nostocales seems to be rather small. Cirés et al. (2013)20

suggest, that the growth rate of the initial population has a bigger impact on bloom formation than the size of the inoculum

(Rücker et al., 2009). Therefore, (Kanoshina et al., 2003) assume that beneficial environmental conditions at the start of the

growing season are the major factor for the development of extensive cyanobacteria blooms.

4 Discussion

In the foregoing chapters, we provided an overview over the current knowledge about Baltic Sea cyanobacteria from the25

perspective of both, modellers and biologists. In the following we discuss key differences between model approaches and

observational evidences (Sect. 4.1). Sect. 4.2 debates the impact of the oceanic processes to the Baltic Sea, respectively. Some

considerations about model assessment metrics are in sect. 4.3.

4.1 Biogeochemical processes

We compared five state-of-the-art biogeochemical models, designed for political decision making regarding their underlaying30

assumptions for simulating cyanobacteria abundance. Our elaborations illustrate that, to date, there is only limited consensus

on the degree of simplification and concerning key processes necessary for a reliable simulation cyanobacteria distribution and

biomass. There is a certain agreement between modellers to focus only on one cyanobacteria class whose growth’s is generally

23

https://doi.org/10.5194/bg-2020-151
Preprint. Discussion started: 19 May 2020
c© Author(s) 2020. CC BY 4.0 License.



controlled by the availability of light and phosphate. All model parameters associated to this single class of cyanobacteria is

necessarily a compromise of the very different observed values for different species (cf., Table 5, 7 and 8). This compromise

is typically reached by adjusting the model parameters until the simulated cyanobacteria show a reasonable agreement with5

observations (c.f., Löptien and Dietze (2015), Schartau et al. (2017)). Somewhat disconcerting the respective parameter choices

differ substantially from one model to another (Table 3 and 4; Fig. 1 and 2). To this end we regard particularly the various

choices of growth permitting phosphate thresholds as critical, because we suspect that these parameter values might have

a drastic effect on model based investigations of nutrient load scenarios. Another potentially problematic assumption which

introduces substantial uncertainty in model simulation is the fixed Redfield-ratio engrained in most models. For projections into

our warming future we suspect that especially the very different temperature dependencies introduce substantial uncertainty in5

the model responses. An additional aspect introducing uncertainty is the need to distinguish between dissolved inorganic (DIP)

and dissolved organic phosphorus (DOP) in models. Another open question is the need to include nutrient storage capacities

into the models. Largest uncertainties in the model formulations, however, regard the bloom termination. The mechanisms are

in general not well understood and require further research. Apart from grazing, viruses were shown to be potentially very

important. Still, the respective knowledge is today too limited to make pertinent model assumptions.10

4.2 Abiotic oceanic processes

The occurrence of cyanobacteria is controlled by several abiotic factors, such as nutrient availability, light, temperature, mixed

layer depth, currents and upwelling. For example, the diazotrophic species Aphanizomenon sp. is able to utilise the upwelled

DIP, despite relative cold temperatures in the upwelled waters (Nausch et al., 2009; Lips and Lips, 2008). Therefore, as up-

welling events will affect the abundance of cyanobacteria, a correct representation in the underlying ocean model is of particular15

importance. To capture the latter, the respective ocean models need a sufficient spatial resolution and also reliable boundary

conditions and the respective derivation of the surface fluxes are of major importance (e.g., Dietze and Löptien (2016)). Without

a good representation of these factors in the underlying ocean model parameter adjustments in the biogeochemical component

lead inevitably to reciprocal bias compensation, i.e. flaws of the ocean component are compensating by tuning the biogeo-

chemical module to obtain a reasonable good agreement between model and observations. The problem with such an approach20

is that such a bias compensation is not necessarily robust under changing environmental conditions (Löptien and Dietze, 2019).

4.3 Model assessment metrics

Given the above considerations, the assessment of a model, that is designed for sensitivity studies, future projections and

political decision making cannot be limited on cyanobacteria alone. Rather, a meaningful model assessment needs to take

additionally the controlling mechanisms into account (such as the representation of nutrients, light, mixing, upwelling). So far,25

however, no common model evaluation criteria exist. A major difficulty in this respect is the still limited data availability. It

is already challenging to obtain large-scale observations of cyanobacteria, let alone all other above mentioned data (e.g. light

conditions, nutrient distributions, zooplankton concentration and virus abundances). Today, satellite data are, due to their easy

accessibility, often the first choice. While it is well known, that these data contain a considerable degree of uncertainty (e.g.
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Reinart and Kutser, 2006), it is the only data source to assess large scale pattern of cyanobacteria and to evaluate simulated30

cyanobacteria blooms Baltic-wide. Thus, several studies compare the simulated distribution of cyanobacteria with satellite

images. However, so far these evaluations are mostly limited to long-term averages or interannual variations of the maximum

or cumulative surface area covered by cyanobacteria in the Baltic Proper (e.g. Eilola et al., 2011; Janssen et al., 2004). On a

positive note, the amount of available in-situ data increases continuously (e.g., by Ferry boxes: Kaitala et al. (2014); Łysiak-

Pastuszak et al. (2012); Mazur-Marzec et al. (2013); Petersen et al. (2018); Lips and Lips (2017)). Thus, new model approaches35

are upcoming, including fuzzy- (e.g., Lilover and Laanemets, 2008; Laanemets et al., 2006) and/or statistical models (e.g.,

Håkanson, 2009). Given the present situation of limited data availability, however, such interesting approaches remain today

rather somewhat inconclusive. We expect that the open data politic of many institutes and public available data collections (like

ICES, HELCOM) facilitate the development of more reliable models.

5 Conclusions

The present study summarises current knowledge on cyanobacteria in the Baltic Sea from the peer-reviewed literature. We

consider both, a ’modellers’ and a ’biologists’ perspective.5

There is a certain consensus between the five considered biogeochemical models, that cyanobacteria have an advantage

over other functional groups under nitrate deplete condition. Also, the models agree in that the growth of cyanobacteria is

generally controlled by the availability of light and phosphate. Other than that, there is a relatively large spread on underlying

assumptions: E.g., two models include salinity constrains on the growth of cyanobacteria and one model considers additionally

oxygen, while all others don’t. Particularly uncertain seems the determination of critical nutrient thresholds as well as other10

model parameters (such as maximum growth rate or temperature dependencies; cf., Table 3 and Fig.1). This uncertainty is even

more pronounced when it comes to the parameterisation of loss processes, such as grazing and mortality (Fig. 2 and Table 4).

So why are model parameter settings and model formulations so different among the current generation of state-of-the-

art models? A comparison of model assumptions with field and laboratory studies suggests following: modellers generally

aim to keep the model complexity on a low level, which typically results in the explicit representation of only one "average"15

cyanobacteria species rather than the explicit representation of all potentially important species. The observations indicate that

the most abundant species in the Baltic, Nodularia spumigena, Aphanizomenon flosaque and Dolichospermum sp. all of which

benefit from very different environmental conditions. E.g. Aphanizomenon flosaqua. seems to be able to utilise upwelled

nutrients (e.g. Lips and Lips, 2008)), while Nodularia spumigena requires higher temperatures and seems even negatively

affected by upwelling events (Kanoshina et al., 2003). Nodularia spumigena, on the other hand, has a higher tolerance to20

phosphorus starvation than Dolichospermum sp.. Naturally, the attempt to engrain such differing behaviour into one species is

challenging. The alternative, however, to opt for a more complex model with an explicit representation of several species is

also challenging. Increasing model complexity does generally also increases the amount of poorly known model parameters

considerably and, even so, does not necessarily lead to improvements in model performance and predictive skill - rather the

predictive skill can even worsen due to overfitting (e.g. Friedrichs et al., 2007; Kriest et al., 2010; Ward et al., 2013) and many25
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more to follow). Thus, increasing the number of species in a model requires careful consideration, a good-enough process

understanding and a sufficient amount of reliable observations (that resolve the increase in model complexity).
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Tables

Table 01. Coupled biogeochemical ocean models considered in this study. Note that models evolve over time. We refer to the referenced

versions below.

Model Reference

BALTSEM Savchuck, 2002

CEMBS Dzierzbicka-Głowacka et al. (2013)

ECOSMO Daewel and Schrum (2013)

ERGOM Neumann et al. (2002)

SCOBI Eilola et al. (2009)
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Table 02. Description and units of the ecosystem model parameters considered in this study. The focus is on those parameters that differ

among the different functional groups.

Parameter Description) Unit

µ max phytoplankton growth rates day−1

KP Half-saturation constant for phosphate mmolP/m3

mot Linear phytoplankton mortality day−1

motquad Quadratic phytoplankton mortality day−2

σ Max. zooplankton grazing day−1

ai food preference per functional type i =1,2,3 unitless

(optionally multiplied to σ )

sinki Sinking rate of phytoplankton mday−1
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Table 03. Key model parameters impacting cyanobacteria growth and sinking rates of phytoplankton put into relation to the respective

parameters of other functional groups. All models include three functional phytoplankton groups, including cyanobacteria and diatoms. The

third functional group, however, is called "flagellates" in ECOSMO, ERGOM and SCOBI, while BALTSEM refers the third functional group

to "summer species" and CEMBS to "small phytoplankton". Note, that the ERGOM-model uses a modified Michealis-Menten formulation

and the half-saturation constants are thus not directly comparable to the other models. For models which include temperature dependence

(Fig01) the values provided refer to 0◦C (BALTSEM). Note that, as a peculiarity, the BALTSEM models uses different sinking rates for

diatoms in spring and autumn and also the sinking speed depends on temperature and morphology.

Model µ (cyan.; diatoms; others) KP (cyan; diatoms, others) sinki (cyan.; diatoms; others)

BALTSEM 1.0; 1.3; 0.9 1.5; 1.5; 3.0 0.1; 0.5/0.1; 0.1

CEMBS 0.33; 1.3 1.3 0.5; 0.1; 0.05 not provided

ECOSMO 1.0; 1.3; 1.1 0.05; 0.05; 0.05 non-zero ; 0.0; 0.0

ERGOM 0.5; 1.0; 0.7 0.5 ; 0.3; 0.15 -0.1; 0.5,0.0

SCOBI 1.0; 1.3; 0.9 0.05; 0.1; 0.05 0.0; 0.5; 0.1
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Table 04. Model parameters that determine the termination of cyanobacterial blooms. Comparison among the models and respective pa-

rameters of other functional groups. The phytoplankton mortality rates in BALTSEM are temperature dependent. The provided values refer

to 0◦C. Also, the BALTSEM model uses different parameter values for diatoms in spring and autumn. The provided values for σ for the

ECOSMO and the SCOBI-model result from the product of max. zooplankton growth rate and food preference for the respective phytoplank-

ton functional groups. The two values for the ECOSMO-model refer to their two zooplankton groups: macro- and micro zooplankton.

Model σ (cyan.; diatoms; other ) phyt. mot (cyan.; diatoms; other ) phyt. motquad (cyan; diatoms; other )

BALTSEM 0.3; 1.0/0.0; 0.7 0.4; 0.6/0.3; 0.4 -

CMEBS 0.9; 1.95; 2.5 0.17; 0.15; 0.15 0.0; 0.0035; 0.0035

ECOSMO 0.09/0.09; 0.25/0.68; 0.7/0.08 0.08; 0.05; 0.08 -

ERGOM 0.25; 0.5; 0.5 0.02; 0.02; 0.02 -

SCOBI 0.03; 0.09; 0.105 0.05; 0.05; 0.05 -
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Table 05. Maximal growth rate (µ) of the studied cyanobacteria species

Class species µ Reference

Cyanobacteria Aphanizomenon flos-aque 0.39 Foy et al. (1976b)

Cyanobacteria Aphanizomenon flos-aque 0.89 Gotham and Rhee (1981)

Cyanobacteria Aphanizomenon flos-aque 0.95-1.34 Rhee and Lederman (1983)

Cyanobacteria Aphanizomenon flos-aque 0.99 Lee and Rhee (1999)

Cyanobacteria Aphanizomenon flos-aque 0.43 Sommer (1981)

Cyanobacteria Aphanizomenon flos-aque 0.89 Gotham and Rhee (1981)

Cyanobacteria Aphanizomenon flos-aque 0.28-0.31 Rakko and Seppäälä (2014)

Cyanobacteria Aphanizomenon flos-aque 0.25-0.75 Lee and Rhee (1997)

Cyanobacteria Aphanizomenon flos-aque 0.18 Konopka and Brock (1978)

Cyanobacteria Aphanizomenon flos-aque, 1.2 Robarts and Zohary (1987)

Cyanobacteria Dolichospermum sp. 0.51 Foy et al. (1976b)

Cyanobacteria Dolichospermum sp. 0.41 Sommer (1981)

Cyanobacteria Dolichospermum sp. 0.78 Reynolds (2006)

Cyanobacteria Dolichospermum sp. 0.4-1.1 Tang et al. (1997)

Cyanobacteria Dolichospermum sp. 0.94-1.27 Oh et al. (1991)

Cyanobacteria Dolichospermum sp. 0.93 Lürling et al. (2013)

Cyanobacteria Dolichospermum sp. 0.4 Konopka and Brock (1978)

Cyanobacteria Dolichospermum sp. 1.25 Nalewajko and Murphy (2001)

Cyanobacteria Nodularia spumigena 0.14-0.16 Rakko and Seppäälä (2014)

Cyanobacteria Nodularia spumigena 0.2-0.6 Sommer et al. (2006)

Cyanobacteria Nodularia spumigena 0.13 Lehtimäki et al. (1997)
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Table 06. Maximal growth rate (µ) of different phytoplankton groups

Class species µ Reference

Green algae Chlamydomonas reinhardtii 3.3-3.8 Hoogenhout and Amesz (1965)

Green algae Chlorella luteoviridis 0.56 Hoogenhout and Amesz (1965)

Green algae Chlorella strain 221 1.84 Reynolds (2006)

Green algae Eudorina unicocca 0.62 Reynolds and Rodgers (1983)

Green algae Scenedesmus sp. 1.35 Gotham and Rhee (1981)

Green algae Volvox aureus 0.46 Reynolds (2006)

Green algae 8 species 0.24 -1.38 Lürling et al. (2013)

Dinoflagellates Ceratium furcoides 0.29 Butterwick et al. (2005)

Dinoflagellates Ceratium hirundinella 0.21 Reynolds (2006)

Diatoms Asterionella formosa 1.9-2.4 Hoogenhout and Amesz (1965)

Diatoms Asterionella formosa 1.78 Lund (1949)

Diatoms Asterionella formosa 1.78 Lund (1949)

Diatoms Asterionella formosa 0.67 Holm and Armstrong (1981)

Diatoms Chaetoceros gracilis >3.1 Werner (1977)

Diatoms Cyclotella nana 1.6 Fuhs (1972)

Diatoms Cyclotella nana 3.4 Hoogenhout and Amesz (1965)

Diatoms Fragilaris crotonensis 0.90 Gotham and Rhee (1981)

Diatoms Fragilaris crotonensis 1.37 Reynolds (2006)

Diatoms Nitzschia actinastroides 1.5 Werner (1977)

Diatoms Skeletonema costatum 4.3 Hoogenhout and Amesz (1965)

Diatoms Staphanodiscus hantzschii 1.7 Hoogenhout and Amesz (1965)

Diatoms Thalassiosira fluviatilis 1.6 Fuhs (1972)
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Table 07. Optimal temperature range for growth of different phytoplankton groups

Class species ◦ C Reference

Cyanobacteria Aphanizomenon flosaquae 18-22,5 Tang et al. (1997)

Cyanobacteria Aphanizomenon sp. 16-22 Lehtimäki et al. (1994)

Cyanobacteria Aphanizomenon sp. 25 Konopka and Brock (1978)

Cyanobacteria Aphanizomenon gracile 32.5 Lürling et al. (2013)

Cyanobacteria Dolichospermum sp. 18-35 Tang et al. (1997)

Cyanobacteria Dolichospermum sp. 25 Lürling et al. (2013)

Cyanobacteria Dolichospermum sp. 25 Konopka and Brock (1978)

Cyanobacteria Dolichospermum sp. 28-32 Nalewajko and Murphy (2001)

Cyanobacteria Nodularia sp. 20-25 Lehtimäki et al. (1994)

Cyanobacteria Nodularia sp. 25-30 Nordin et al. (1980)

Cyanobacteria Nodularia sp. 25-30 Lehtimäki et al. (1997)

Green algae Ankistrodesmus falcatus 32.5 Lürling et al. (2013)

Green algae Chlamydomonos reinhardtii 27.5 Lürling et al. (2013)

Green algae Desmodesmus bicellularis 35 Lürling et al. (2013)

Green algae Desmodesmus quadricauda 32.5 Lürling et al. (2013)

Green algae Monoraphidium minutum 27.5 Lürling et al. (2013)

Green algae Scenedesmus acuminatus 27.5 Lürling et al. (2013)

Dinoflagellates Ceratium furcoides 20 Butterwick et al. (2005)

Diatoms Chaetoceros socialis 18 Eppley (1977)

Diatoms Skeletonema costatum (3 studies) 16-30 Eppley (1977)

Diatoms Thalassiosira nordenskiolldii 11-14 Eppley (1977)
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Table 08. Half-saturation constant for phosphate (Kp) for different phytoplankton groups.

Please note that different size classes of algae are indicated by numbers (1: tiny; 2: small; 3: medium, 4: large) and by letter (A: chains; B:

single; C: other)

Phylum Species Kp [mmolP m−3] Reference

Cyanobacteria Aphanizomenon flosaquae1,2,A 1.13 Gotham and Rhee (1981)

Cyanobacteria Aphanizomenon flosaquae1,2,A 2.5 (Degerholm et al., 2006)

Cyanobacteria Aphanizomenon flosaquae1,2,A 1-2. (Healey at al., 1973)

Cyanobacteria Dolichospermum sp.1,A 1.8-2.5 Reynolds (2006)

Cyanobacteria Microcystis aeruginosa1,A 1.23 Holm and Armstrong (1981)

Cyanobacteria Microcystis sp.1,A 2.11 Gotham and Rhee (1981)

Cyanobacteria Nodularia spumigena2,A 1.0-1.7 Degerholm et al. (2006)

Green algae Chlorella pyrenoidosa1,2,B 0.68 Nyholm (1977)

Green algae Scenedesmus sp.1,2,C 0.57/3.4 Gotham and Rhee (1981)

Green algae Volvox aureus4,C 5.24 Reynolds (2006)

Dinoflagellates Alexandrium tamarense3,4,B,C 2.6 Yamamoto et al. (2012)

Dinoflagellates Gymnodinium catenatum4,A,B 3.4 Yamamoto et al. (2012)

Dinoflagellates Peridinium sp.2−4,B 0.11 Reynolds (2006)

Dinoflagellates Pyrocystis noctiluca3,4,B 2.1 Rivkin and Swift (1982)

Diatoms Asterionella formosa1,C 0.70 Holm and Armstrong (1981)

Diatoms Chaetoceros gracilis1,A,B 0.12 Werner (1977)

Diatoms Cyclotella nana1,2,A,C 0.58 Fuhs (1972)

Diatoms Nitzschia actinastroides1,C 0.013 Werner (1977)

Diatoms Skeletonema costatum1,2,A 0.68 Tarutani and Yamamoto (1994)

Diatoms Thalassiosira fluviatilis3,4,B 1.72 Fuhs (1972)
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Table 09. Optimal light levels (W/m2) for the studied cyanobacteria species

Species W/m2 grow condition Reference

all 3 species 61.32 best Śliwińska-Wilczewska et al. (2019)

Aphanizomenon flos-aque 6-10 best Lehtimäki et al. (1997)

Aphanizomenon flos-aque >33 best Üveges et al. (2012)

Dolichospermum sp. 8.32 best Eigemann et al. (2018)

Dolichospermum sp. 3.72 best Walsby and Booker (1980)

Nodularia spumigena 25 best Nordin et al. (1980)

Nodularia spumigena 5-114 can grow Nordin et al. (1980)

Nodularia spumigena 32.85 best Eigemann et al. (2018)

Nodularia spumigena 23-34 best Lehtimäki et al. (1997)

Nodularia spumigena 63.5 best Jodlowska and Latala (2019)

Nodularia spumigena 65.7 best Roleda et al. (2008)
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Table 010. Sinking/ floating speed of different cyanobacteria

Class species m · d− 1 Reference

Cyanobacteria Aphanizomenon flos-aque 3.5-5.2 Reynolds (2006)

Cyanobacteria Aphanizomenon flos-aque 22 Walsby et al. (1995)

Cyanobacteria Aphanizomenon flos-aque 15.5-51.8 Adam (1999)

Cyanobacteria Doliochospermum sp. 3.5-5.2 Reynolds (2006)

Cyanobacteria Dolichospermum sp. 0.1-0.3 Walsby et al. (1995)

Cyanobacteria Nodularia spumigena 36 Walsby et al. (1995)

Cyanobacteria Nodularia spumigena 35-45.7 Adam (1999)
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