2,983 research outputs found
Completeness of the classical 2D Ising model and universal quantum computation
We prove that the 2D Ising model is complete in the sense that the partition
function of any classical q-state spin model (on an arbitrary graph) can be
expressed as a special instance of the partition function of a 2D Ising model
with complex inhomogeneous couplings and external fields. In the case where the
original model is an Ising or Potts-type model, we find that the corresponding
2D square lattice requires only polynomially more spins w.r.t the original one,
and we give a constructive method to map such models to the 2D Ising model. For
more general models the overhead in system size may be exponential. The results
are established by connecting classical spin models with measurement-based
quantum computation and invoking the universality of the 2D cluster states.Comment: 4 pages, 1 figure. Minor change
Analysis of a continuous-variable quadripartite cluster state from a single optical parametric oscillator
We examine the feasibility of generating continuous-variable multipartite
entanglement in an intra-cavity quadruply concurrent downconversion scheme that
has been proposed for the generation of cluster states by Menicucci \textit{et
al.} [Physical Review Letters \textbf{101}, 130501 (2008)]. By calculating
optimized versions of the van Loock-Furusawa correlations we demonstrate
genuine quadripartite entanglement and investigate the degree of entanglement
present. Above the oscillation threshold the basic cluster state geometry under
consideration suffers from phase diffusion. We alleviate this problem by
incorporating a small injected signal into our analysis. Finally, we
investigate squeezed joint operators. While the squeezed joint operators
approach zero in the undepleted regime, we find that this is not the case when
we consider the full interaction Hamiltonian and the presence of a cavity. In
fact, we find that the decay of these operators is minimal in a cavity, and
even depletion alone inhibits cluster state formation.Comment: 26 pages, 12 figure
State-dependent, addressable subwavelength lattices with cold atoms
We discuss how adiabatic potentials can be used to create addressable
lattices on a subwavelength scale, which can be used as a tool for local
operations and readout within a lattice substructure, while taking advantage of
the faster timescales and higher energy and temperature scales determined by
the shorter lattice spacing. For alkaline-earth-like atoms with non-zero
nuclear spin, these potentials can be made state dependent, for which we give
specific examples with Yb atoms. We discuss in detail the limitations
in generating the lattice potentials, in particular non-adiabatic losses, and
show that the loss rates can always be made exponentially small by increasing
the laser power.Comment: replaced with the published version. 23 pages, 11 figure
Direct evaluation of pure graph state entanglement
We address the question of quantifying entanglement in pure graph states.
Evaluation of multipartite entanglement measures is extremely hard for most
pure quantum states. In this paper we demonstrate how solving one problem in
graph theory, namely the identification of maximum independent set, allows us
to evaluate three multipartite entanglement measures for pure graph states. We
construct the minimal linear decomposition into product states for a large
group of pure graph states, allowing us to evaluate the Schmidt measure.
Furthermore we show that computation of distance-like measures such as relative
entropy of entanglement and geometric measure becomes tractable for these
states by explicit construction of closest separable and closest product states
respectively. We show how these separable states can be described using
stabiliser formalism as well as PEPs-like construction. Finally we discuss the
way in which introducing noise to the system can optimally destroy
entanglement.Comment: 23 pages, 9 figure
Single-parameter non-adiabatic quantized charge pumping
Controlled charge pumping in an AlGaAs/GaAs gated nanowire by
single-parameter modulation is studied experimentally and theoretically.
Transfer of integral multiples of the elementary charge per modulation cycle is
clearly demonstrated. A simple theoretical model shows that such a quantized
current can be generated via loading and unloading of a dynamic quasi-bound
state. It demonstrates that non-adiabatic blockade of unwanted tunnel events
can obliterate the requirement of having at least two phase-shifted periodic
signals to realize quantized pumping. The simple configuration without multiple
pumping signals might find wide application in metrological experiments and
quantum electronics.Comment: 4 pages, 4 figure
Age-Depth Stratigraphy of Pine Island Glacier Inferred from Airborne Radar and Ice-Core Chronology
Understanding the contribution of the West Antarctic Ice Sheet (WAIS) to past and future sea level has been a major scientific priority over the last three decades. In recent years, observed thinning and ice‐flow acceleration of the marine‐based Pine Island Glacier has highlighted that understanding dynamic changes is critical to predicting the long‐term stability of the WAIS. However, relatively little is known about the evolution of the catchment during the Holocene. Internal Reflecting Horizons (IRHs) provide a cumulative record of accumulation, basal melt and ice dynamics that, if dated, can be used to constrain ice‐flow models. Here, we use airborne radars to trace four spatially‐extensive IRHs deposited in the late Quaternary across the Pine Island Glacier catchment. We use the WAIS Divide ice‐core chronology to assign ages to three IRHs: 4.72 ± 0.28, 6.94 ± 0.31, and 16.50 ± 0.79 ka. We use a 1‐D model, constrained by observational and modelled accumulation rates, to produce an independent validation of our ice‐core‐derived ages and provide an age estimate for our shallowest IRH (2.31‐2.92 ka). We find that our upper three IRHs correspond to three large peaks in sulphate concentrations in the WAIS Divide ice‐core record and hypothesise that the origin of these spatially‐extensive IRHs is from past volcanic activity. The clear correspondence between our IRHs and the ones previously identified over the Weddell Sea Sector, altogether representing ∼20% of the WAIS, indicates that a unique set of stratigraphic markers spanning the Holocene exists over a large part of West Antarctica
A targeted drilling and dating campaign to identify Stone Age archaeological sites before excavation in west coast southern Africa
Here we present the results of a targeted drilling campaign that facilitated a geochronological study with coarse
sampling resolution inside a new cave site, Simons Cave, on the west coast of southern Africa. A combination of
radiocarbon (14C) dating and optically stimulated luminescence (OSL) dating was used as a range-finder. Results
confirmed preservation of Holocene and late Pleistocene sediments up to 133 ± 35 ka, overlapping with the ages
of Middle Stone Age (MSA) occupations of the broader west coast region. A subsequent, systematic test-
excavation at the site then embarked on a second geochronological study with a higher sampling resolution.
Ultimately, the comparative study confirmed the potential of Simons Cave as a new site for the exploration of
hominin occupation through the later Pleistocene and Holocene, yet raised several issues concerning the direct
comparability of information deriving from drilled sediment cores and actual archaeological excavation
Decay of Entanglement for Solid-State Qubits
We investigate the time evolution of entanglement under various models of
decoherence: A general heuristic model based on local relaxation and dephasing
times, and two microscopic models describing decoherence of electron spin
qubits in quantum dots due to the hyperfine interaction with the nuclei. For
each of the decoherence models, we investigate and compare how long the
entanglement can be detected. We also introduce filtered witness operators,
which extend the available detection time, and investigate this detection time
for various multipartite entangled states. By comparing the time required for
detection with the time required for generation and manipulation of
entanglement, we estimate for a range of different entangled states how many
qubits can be entangled in a one-dimensional array of electron spin qubits.Comment: 12 pages, 5 figure
- …