42 research outputs found

    Human germline heterozygous gain-of-function STAT6 variants cause severe allergic disease

    Get PDF
    sharma et al. define a new primary atopic disorder caused by heterozygous gain-of-function variants in STAT6. this results in severe, early-onset allergies, and is seen in 16 patients from 10 families. Anti-IL-4R & alpha; antibody and JAK inhibitor treatment were highly effective.STAT6 (signal transducer and activator of transcription 6) is a transcription factor that plays a central role in the pathophysiology of allergic inflammation. we have identified 16 patients from 10 families spanning three continents with a profound phenotype of early-life onset allergic immune dysregulation, widespread treatment-resistant atopic dermatitis, hypereosinophilia with esosinophilic gastrointestinal disease, asthma, elevated serum IgE, IgE-mediated food allergies, and anaphylaxis. the cases were either sporadic (seven kindreds) or followed an autosomal dominant inheritance pattern (three kindreds). all patients carried monoallelic rare variants in STAT6 and functional studies established their gain-of-function (GOF) phenotype with sustained STAT6 phosphorylation, increased STAT6 target gene expression, and T(H)2 skewing. Precision treatment with the anti-IL-4R & alpha; antibody, dupilumab, was highly effective improving both clinical manifestations and immunological biomarkers. this study identifies heterozygous GOF variants in STAT6 as a novel autosomal dominant allergic disorder. We anticipate that our discovery of multiple kindreds with germline STAT6 GOF variants will facilitate the recognition of more affected individuals and the full definition of this new primary atopic disorder

    Human germline heterozygous gain-of-function STAT6 variants cause severe allergic disease

    Get PDF
    STAT6 (signal transducer and activator of transcription 6) is a transcription factor that plays a central role in the pathophysiology of allergic inflammation. We have identified 16 patients from 10 families spanning three continents with a profound phenotype of early-life onset allergic immune dysregulation, widespread treatment-resistant atopic dermatitis, hypereosinophilia with esosinophilic gastrointestinal disease, asthma, elevated serum IgE, IgE-mediated food allergies, and anaphylaxis. The cases were either sporadic (seven kindreds) or followed an autosomal dominant inheritance pattern (three kindreds). All patients carried monoallelic rare variants in STAT6 and functional studies established their gain-of-function (GOF) phenotype with sustained STAT6 phosphorylation, increased STAT6 target gene expression, and TH2 skewing. Precision treatment with the anti-IL-4Rα antibody, dupilumab, was highly effective improving both clinical manifestations and immunological biomarkers. This study identifies heterozygous GOF variants in STAT6 as a novel autosomal dominant allergic disorder. We anticipate that our discovery of multiple kindreds with germline STAT6 GOF variants will facilitate the recognition of more affected individuals and the full definition of this new primary atopic disorder

    Primary immunodeficiencies associated with eosinophilia

    Full text link

    Natural history of infants with non-SCID T cell lymphopenia identified on newborn screen

    No full text
    Newborn screening (NBS) for severe combined immunodeficiency (SCID) can identify infants with non-SCID T cell lymphopenia (TCL). The purpose of this study was to characterize the natural history and genetic findings of infants with non-SCID TCL identified on NBS. We analyzed data from 80 infants with non-SCID TCL in the mid-Atlantic region between 2012 and 2019. 66 patients underwent genetic testing and 41 (51%) had identified genetic variant(s). The most common genetic variants were thymic defects (33%), defects with unknown mechanisms (12%) and bone marrow production defects (5%). The genetic cohort had significantly lower median initial CD3+, CD4+, CD8+ and CD4/CD45RA+ T cell counts compared to the non-genetic cohort. Thirty-six (45%) had either viral, bacterial, or fungal infection; only one patient had an opportunistic infection (vaccine strain VZV infection). Twenty-six (31%) of patients had resolution of TCL during the study period

    Immune Dysregulation in Human ITCH Deficiency Successfully Treated with Hematopoietic Cell Transplantation

    No full text
    Background: Mutations in ITCH, which encodes an E3 ubiquitin-protein ligase, can result in systemic autoimmunity and immunodeficiency. The clinical phenotype and mechanism of disease have not been fully characterized, resulting in a paucity of therapeutic options for this potentially fatal disease. Objective: We aimed to (1) expand the understanding about the phenotype of human ITCH deficiency (2) further characterize the associated immune dysregulation, and (3) report the first successful hematopoietic cell transplant (HCT) in a patient with ITCH deficiency. Methods: Disease profiling was performed in a patient with multisystem immune dysregulation. Whole exome sequencing with trio analysis and functional validation of candidate disease variants were performed, including mRNA and protein expression. Analyses to further delineate the immunophenotype included quantitative evaluation of lymphoid and myeloid subsets with flow cytometry and mass cytometry. Results: A patient with multisystem immune dysregulation presenting with growth failure, very-early-onset inflammatory bowel disease, arthritis, uveitis, psoriasis, and type 1 diabetes mellitus underwent whole exome sequencing, which identified novel compound heterozygous mutations in ITCH. Reduced expression of ITCH mRNA and absent ITCH protein were found. Abnormalities in both lymphoid and myeloid lineages were identified. The patient underwent HCT. He demonstrated excellent immune reconstitution and resolution of many manifestations of his systemic disease. Conclusions: Here we report ITCH deficiency with unique clinical features of colonic very-early-onset inflammatory bowel disease, arthritis, and uveitis in the setting of immune dysregulation and further characterize the underlying immune dysregulation. We demonstrate that HCT can be an effective, and potentially curative, therapy for ITCH deficiency

    Granulocyte Transfusions in Patients with Chronic Granulomatous Disease Undergoing Hematopoietic Cell Transplantation or Gene Therapy.

    No full text
    Granulocyte transfusions are sometimes used as adjunctive therapy for the treatment of infection in patients with chronic granulomatous disease (CGD). However, granulocyte transfusions can be associated with a high rate of alloimmunization, and their role in CGD patients undergoing hematopoietic cell transplantation (HCT) or gene therapy (GT) is unknown. We identified 27 patients with CGD who received granulocyte transfusions pre- (within 6 months) and/or post-HCT or GT in a retrospective survey. Twelve patients received granulocyte transfusions as a bridge to cellular therapy. Six (50%) of these patients had a complete or partial response. However, six of 10 (60%) patients for whom testing was performed developed anti-HLA antibodies, and three of the patients also had severe immune-mediated cytopenia within the first 100 days post-HCT or GT. Fifteen patients received granulocyte transfusions post-HCT only. HLA antibodies were not checked for any of these 15 patients, but there were no cases of early immune-mediated cytopenia. Out of 25 patients who underwent HCT, there were 5 (20%) cases of primary graft failure. Three of the patients with primary graft failure had received granulocyte transfusions pre-HCT and were subsequently found to have anti-HLA antibodies. In this small cohort of patients with CGD, granulocyte transfusions pre-HCT or GT were associated with high rates of alloimmunization, primary graft failure, and early severe immune-mediated cytopenia post-HCT or GT. Granulocyte transfusions post-HCT do not appear to confer an increased risk of graft failure
    corecore