1,683 research outputs found

    Broad-Band Soft X-ray Polarimetry

    Full text link
    We developed an instrument design capable of measuring linear X-ray polarization over a broad-band using conventional spectroscopic optics. A set of multilayer-coated flats reflects the dispersed X-rays to the instrument detectors. The intensity variation with position angle is measured to determine three Stokes parameters: I, Q, and U -- all as a function of energy. By laterally grading the multilayer optics and matching the dispersion of the gratings, one may take advantage of high multilayer reflectivities and achieve modulation factors > 50% over the entire 0.2 to 0.8 keV band. This instrument could be used in a small orbiting mission or scaled up for the International X-ray Observatory. Laboratory work has begun that would demonstrate the capabilities of key components.Comment: 6 pages, 3 figures (2 color); to appear in proceedings of "The Coming of Age of X-ray Polarimetry

    Entropy-driven phase transition in a polydisperse hard-rods lattice system

    Full text link
    We study a system of rods on the 2d square lattice, with hard-core exclusion. Each rod has a length between 2 and N. We show that, when N is sufficiently large, and for suitable fugacity, there are several distinct Gibbs states, with orientational long-range order. This is in sharp contrast with the case N=2 (the monomer-dimer model), for which Heilmann and Lieb proved absence of phase transition at any fugacity. This is the first example of a pure hard-core system with phases displaying orientational order, but not translational order; this is a fundamental characteristic feature of liquid crystals

    Failure of Mean Field Theory at Large N

    Full text link
    We study strongly coupled lattice QCD with NN colors of staggered fermions in 3+1 dimensions. While mean field theory describes the low temperature behavior of this theory at large NN, it fails in the scaling region close to the finite temperature second order chiral phase transition. The universal critical region close to the phase transition belongs to the 3d XY universality class even when NN becomes large. This is in contrast to Gross-Neveu models where the critical region shrinks as NN (the number of flavors) increases and mean field theory is expected to describe the phase transition exactly in the limit of infinite NN. Our work demonstrates that close to second order phase transitions infrared fluctuations can sometimes be important even when NN is strictly infinite.Comment: 4 pages, 3 figure

    A Class of Parameter Dependent Commuting Matrices

    Get PDF
    We present a novel class of real symmetric matrices in arbitrary dimension dd, linearly dependent on a parameter xx. The matrix elements satisfy a set of nontrivial constraints that arise from asking for commutation of pairs of such matrices for all xx, and an intuitive sufficiency condition for the solvability of certain linear equations that arise therefrom. This class of matrices generically violate the Wigner von Neumann non crossing rule, and is argued to be intimately connected with finite dimensional Hamiltonians of quantum integrable systems.Comment: Latex, Added References, Typos correcte

    A projection method for statics and dynamics of lattice spin systems

    Full text link
    A method based on Monte Carlo sampling of the probability flows projected onto the subspace of one or more slow variables is proposed for investigation of dynamic and static properties of lattice spin systems. We illustrate the method by applying it, with projection onto the order-parameter subspace, to the three-dimensional 3-state Potts model in equilibrium and to metastable decay in a three-dimensional 3-state kinetic Potts model.Comment: 4 pages, 3 figures, RevTex, final version to appear in Phys. Rev. Let

    A note on density correlations in the half-filled Hubbard model

    Get PDF
    We consider density-density correlations in the one-dimensional Hubbard model at half filling. On intuitive grounds one might expect them to exhibit an exponential decay. However, as has been noted recently, this is not obvious from the Bethe Ansatz/conformal field theory (BA/CFT) approach. We show that by supplementing the BA/CFT analysis with simple symmetry arguments one can easily prove that correlations of the lattice density operators decay exponentially.Comment: 3 pages, RevTe
    corecore