10 research outputs found

    Substrate envelope and drug resistance: crystal structure of RO1 in complex with wild-type human immunodeficiency virus type 1 protease

    Get PDF
    In our previous crystallographic studies of human immunodeficiency virus type 1 (HIV-1) protease-substrate complexes, we described a conserved envelope that appears to be important for substrate recognition and the selection of drug-resistant mutations. In this study, the complex of HIV-1 protease with the inhibitor RO1 was determined and comparison with the substrate envelope provides a rationale for mutational patterns

    A Novel Substrate-Based HIV-1 Protease Inhibitor Drug Resistance Mechanism

    Get PDF
    BACKGROUND: HIV protease inhibitor (PI) therapy results in the rapid selection of drug resistant viral variants harbouring one or two substitutions in the viral protease. To combat PI resistance development, two approaches have been developed. The first is to increase the level of PI in the plasma of the patient, and the second is to develop novel PI with high potency against the known PI-resistant HIV protease variants. Both approaches share the requirement for a considerable increase in the number of protease mutations to lead to clinical resistance, thereby increasing the genetic barrier. We investigated whether HIV could yet again find a way to become less susceptible to these novel inhibitors. METHODS AND FINDINGS: We have performed in vitro selection experiments using a novel PI with an increased genetic barrier (RO033-4649) and demonstrated selection of three viruses 4- to 8-fold resistant to all PI compared to wild type. These PI-resistant viruses did not have a single substitution in the viral protease. Full genomic sequencing revealed the presence of NC/p1 cleavage site substitutions in the viral Gag polyprotein (K436E and/or I437T/V) in all three resistant viruses. These changes, when introduced in a reference strain, conferred PI resistance. The mechanism leading to PI resistance is enhancement of the processing efficiency of the altered substrate by wild-type protease. Analysis of genotypic and phenotypic resistance profiles of 28,000 clinical isolates demonstrated the presence of these NC/p1 cleavage site mutations in some clinical samples (codon 431 substitutions in 13%, codon 436 substitutions in 8%, and codon 437 substitutions in 10%). Moreover, these cleavage site substitutions were highly significantly associated with reduced susceptibility to PI in clinical isolates lacking primary protease mutations. Furthermore, we used data from a clinical trial (NARVAL, ANRS 088) to demonstrate that these NC/p1 cleavage site changes are associated with virological failure during PI therapy. CONCLUSIONS: HIV can use an alternative mechanism to become resistant to PI by changing the substrate instead of the protease. Further studies are required to determine to what extent cleavage site mutations may explain virological failure during PI therapy

    Differential prevalence and geographic distribution of hepatitis C virus genotypes in acute and chronic hepatitis C patients in Vietnam.

    Get PDF
    BACKGROUND: The highest burden of disease from hepatitis C virus (HCV) is found in Southeast Asia, but our understanding of the epidemiology of infection in many heavily burdened countries is still limited. In particular, there is relatively little data on acute HCV infection, the outcome of which can be influenced by both viral and host genetics which differ within the region. We studied HCV genotype and IL28B gene polymorphism in a cohort of acute HCV-infected patients in Southern Vietnam alongside two other cohorts of chronic HCV-infected patients to better understand the epidemiology of HCV infection locally and inform the development of programs for therapy with the increasing availability of directly acting antiviral therapy (DAAs). METHODS: We analysed plasma samples from patients with acute and chronic HCV infection, including chronic HCV mono-infection and chronic Human Immunodeficiency Virus (HIV)-HCV coinfection, who enrolled in four epidemiological or clinical research studies. HCV infection was confirmed with RNA testing. The 5' UTR, core and NSB5 regions of HCV RNA positive samples were sequenced, and the genotype and subtype of the viral strains were determined. Host DNA from all HCV positive patients and age- and sex-matched non-HCV-infected control individuals were analysed for IL28B single nucleotide polymorphism (SNP) (rs12979860 and rs8099917). Geolocation of the patients were mapped using QGIS. RESULTS: 355 HCV antibody positive patients were analysed; 54.6% (194/355) and 46.4% (161/355) were acute and chronic infections, respectively. 50.4% (81/161) and 49.6.4% (80/161) of chronic infections had HCV mono-infection and HIV-HCV coinfection, respectively. 88.7% (315/355) and 10.1% (36/355) of the patients were from southern and central regions of Vietnam, respectively. 92.4% (328/355) of patients were HCV RNA positive, including 86.1% (167/194) acute and 100% (161/161) chronic infections. Genotype could be determined in 98.4% (322/328) patients. Genotypes 1 (56.5%; 182/322) and 6 (33.9%; 109/322) predominated. Genotype 1 including genotype 1a was significantly higher in HIV-HCV coinfected patients compared to acute HCV patients [43.8% (35/80) versus 20.5% (33/167)], (p = <0.001), while genotype 6 was significantly higher in chronic HCV mono-infected patients [(44.4% (36/81) versus 20.0% (16/80)] (p = < 0.004) compared to HIV-HCV coinfected patients. The prevalence of IL28B SNP (rs12979860) homozygous CC was 86.46% (83/96) in control individuals and was significantly higher in acutely-infected compared to chronically-infected patients [93.2 (82/88) versus 76.1% (35/46)] (p = < 0.005). CONCLUSION: HCV genotype 6 is highly prevalent in Vietnam and the high prevalence in treatment naïve chronic HCV patients may results from poor spontaneous clearance of acute HCV infection with genotype 6

    Determination of Phenotypic Drug Susceptibility of C-Terminal Gag Clones

    No full text
    <p>Representation of the fold increases in phenotypic drug susceptibility of the C-terminal Gag clone derived from IVS-1, containing the 436E+437T amino acid change as compared to wild-type HIV (HXB2). The black bars indicate the fold increase as determined in the multiple-cycle MTT drug susceptibility assay, and the gray bars indicate the fold increase as determined in the single-cycle PhenoSense drug susceptibility assay. Drug susceptibility to the PI RO033-4649, LPV, TPV, ATV, AMP, ritonavir (RTV), saquinavir (SQV), indinavir (IDV), and nelfinavir (NFV), and as a control to the RT inhibitor NVP was determined. RO033-4649 and TPV were not available at the time of PhenoSense assay testing.</p

    Schematic Representation of the Viral Frameshift Region and Investigation of Frameshift Efficiency

    No full text
    <div><p>The RNA structure of the frameshift stimulatory signal is represented here [<a href="http://www.plosmedicine.org/article/info:doi/10.1371/journal.pmed.0040036#pmed-0040036-b030" target="_blank">30</a>,<a href="http://www.plosmedicine.org/article/info:doi/10.1371/journal.pmed.0040036#pmed-0040036-b051" target="_blank">51</a>]. The nucleotide and amino acid changes (between brackets) as observed in our in vitro selection experiments are indicated.</p> <p>(A) The relative frameshift efficiency of wild-type HIV (HXB2) and the p1 constructs of IVS-1 (436E+437T), IVS-32 (437V), and IVS-34 (437T). The values of the frameshift efficiency are the means of four independent experiments, with bars representing the standard errors.</p> <p>(B) Analysis of differences in levels of HIV GagPol products (RT, p66, and p51) as compared to HIV Gag products (CA, p24) by Western blot analysis.</p></div

    Analysis of Gag Polyprotein Processing

    No full text
    <p>Western blot analysis of cell lysates (left panel) or virus particles (right panel) obtained by ultracentrifugation of cell culture supernatants from 293T cells transfected with the respective recombinant virus plasmids in the absence of inhibitor or in the presence of 50 or 500 nM of RO033-4649. Molecular mass standards are depicted on the left, Gag-derived proteins are identified on the right. Protein detection was performed following incubation with a specific antibody against NC.</p

    Schematic Representation of the Distribution of all Amino Acid Changes Appearing during in vitro Selection Experiments Using RO033-4649

    No full text
    <p>Horizontal bars below the gene organization scheme represent the genomes of viruses from the three in vitro selection experiments: IVS-1, IVS-32, and IVS-34. Vertical lines illustrate the observed amino acid changes. The C-terminal portion of Gag was expanded to precisely map the nucleotide changes leading to amino acid changes (bold) in both translational reading frames (Gag and GagPol). In addition, the three different cleavage sites (NC/p1, NC/TFP, and TFP/p6<sup>pol</sup>) are indicated. The control experiments, in which no drug was added during the in vitro selections, demonstrated no amino acid changes in the viral Gag and protease region.</p
    corecore