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In our previous crystallographic studies of human immunodeficiency virus type 1 (HIV-1) protease-substrate
complexes, we described a conserved “envelope” that appears to be important for substrate recognition and the
selection of drug-resistant mutations. In this study, the complex of HIV-1 protease with the inhibitor RO1 was
determined and comparison with the substrate envelope provides a rationale for mutational patterns.

Human immunodeficiency virus type 1 (HIV-1) protease is a
key drug target for antiviral therapy (3). However, drug resis-
tance occurs often, making many protease inhibitors (PIs) in-
effective and allowing viral replication to occur (16–19). Pre-
vious studies from our laboratory on crystal structures of
substrate complexes found that the protease substrates occupy
an overlapping volume that we defined as the substrate enve-
lope (15). We found that the location of primary resistance-
associated mutation for existing inhibitors correlates with
where that inhibitor protrudes beyond the substrate envelope
(7, 8, 14) and therefore most active-site drug-resistant muta-
tions occur at residues that are not predominantly contacted by
the protease substrates. In this study, we determined the crystal
structure of a new inhibitor, RO1, and compared its structure
with our previously defined substrate envelope to predict likely
drug resistance sites.

RO1 is a substrate-based HIV-1 PI (Fig. 1) with a 50%
inhibitory concentration of 13 nM. RO1 has 5- to 10-fold
greater inhibition than the 50% inhibitory concentration of

several currently prescribed PIs (4). The crystal structure of
the wild-type protease-RO1 complex has been solved and re-
fined to 1.6 Å (Table 1). In addition the thermodynamics of
binding confirm that the binding of RO1 is comparable to that
of the first-generation drugs, with a dissociation constant (Kd)
of 0.95 nM and a free-energy change (�G) of �12.1 kcal/mol.
Protein sample preparation, isothermal titration calorimetry,
and crystallography were carried out as described previously
(8, 13). The protease dimer is in the asymmetric unit with two
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istry & Molecular Pharmacology, University of Massachusetts Medical
School, 364 Plantation St., Worcester, MA 01605. Phone: (508) 856-
8008. Fax: (508) 856-6464. E-mail: Celia.Schiffer@umassmed.edu.

FIG. 1. Chemical structure of RO1.

TABLE 1. Crystallographic statistics and thermodynamic
parameters of RO1

Parameter Value (SD)

Data collection
Space group ...........................................................................P212121
Z ..............................................................................................4
a (Å) .......................................................................................50.87
b (Å) .......................................................................................58.17
c (Å)........................................................................................61.65
Resolution (Å).......................................................................1.6
Total no. of reflections .........................................................141,598
No. of unique reflections......................................................24814
Rmerge (%) ..............................................................................2.8
Completeness (%).................................................................99.9
I/�1 ..........................................................................................19.2

Refinement
R value (%)............................................................................16.3
Rfree (%).................................................................................19.8
RMSDa

Bond length (Å) ................................................................0.006
Bond angles (°)..................................................................1.5

No. of water molecules.........................................................212
Isothermal titration calorimetryb

Kd (nM) ..................................................................................0.95 (0.08)
�H (kcal/mol) ........................................................................2.41 (0.06)
�T�S (kcal/mol) ...................................................................�14.5
�G (kcal/mol) ........................................................................�12.1

a RMSD, root mean squared deviation.
b Mean values of experiments conducted in triplicate at 20°C.
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inhibitor orientations. The orientation-specific inhibitor-pro-
tease interactions involving the active-site residues Asp25-
Asp30, Met46-Ile50, and Pro81-Ile84 were nonetheless identi-
fied during the crystallographic refinement.

RO1-protease hydrogen bonds. The inhibitor makes 10 back-
bone hydrogen bonds and a network of water bridges with the

protease (Table 2 and Fig. 2). The RO1 atoms forming hydro-
gen bonds, except O-6, occupy substrate backbone positions of
substrate-protease complexes. O-6 nonetheless overlies a sub-
strate side chain atom which is usually Asp/AsnP2 OD1 or
Glu/GlnP2 OE1 (Table 2). In addition, most RO1-protease
hydrogen bonds resemble substrate-protease interactions. An-
other feature of RO1-protease hydrogen bonds is the involve-
ment of both flaps (Gly48) and the floor of the active site
(Asp25, Gly27, Asp29, and Asp30). In general, the flap resi-
dues do not participate in the inhibitor-protease hydrogen
bonds as in indinavir (IDV), nelfinavir (NFV), TMC114, and
amprenavir (APV) (Table 3). The substrates, in contrast, form
hydrogen bonds with Gly48 and in certain cases even with
Met46 (15).

The RO1 inhibitor is also stabilized by a network of water
molecules, in addition to the five water molecules preserved in
most HIV-1 protease complexes (Fig. 2, water molecules la-
beled W3, W5, W8, W31, and W83), four additional water
molecules (W88, Wat2C, Wat3C, and Wat5C) form a network
of bridges mediating the inhibitor (N-3 atom of P2�) and the

FIG. 2. Inhibitor protease hydrogen bonds: The two HIV-1 pro-
tease monomers are distinguished in cyan and magenta, while RO1 is
shown in yellow. Nitrogen and oxygen atoms are illustrated in blue and
red, respectively. The figure was created using Molscript (9).

TABLE 3. Comparison of inhibitor protease hydrogen bondsa

Protease
position

Bond

Inhibitor RO1 SQV NFV IDV APV TMC114

Asp30 OD2 OH No No Yes No No No
Asp30 OD2 NH2 No Yes No No Yes No
Gly27 O NH Yes Yes Yes Yes Yes Yes
Asp29 N O Yes Yes No No Yes Yes
Asp29 N O Yes Yes No Yes No Yes
Asp29 OD1 O Yes No No Yes No Yes
Asp30 N O Yes Yes No No Yes Yes
Asp30 O NH No No No No Yes Yes
Gly48 O NH Yes Yes No No No No
Gly48 O NH No Yes No No No No

Total 6 7 2 3 5 6

a The four hydrogen bonds involving the Asp25/25� side chain are omitted, as
they are conserved in all the inhibitors. The hydrogen bond affected by the D30N
NFV resistance mutation is highlighted in bold, while the conserved hydrogen
bond found in all of the inhibitor complexes is highlighted with italics. The
coordinates used are 1HXB (saquinavir [SQV]) (10), 1OHR (NFV) (5), 1HSG
(IDV) (2), 1HPV (APV) (6), and 1T3R (TMC114) (8).

TABLE 2. Inhibitor-protease hydrogen bonds made by RO1 with the protease

Protein Atom Inhibitor
atom

Pattern found in substrate complexes
(protein . . . substrate)

Distance (Å)

Orientation 1 Orientation 2

Asp29 N O-6 Asp29/29� N . . . OD1/OE1 P2/P2� 2.9 2.9
Asp30 N O-6 Asp30/30� N . . . OD1/OE1 P2/P2� 2.9 2.8
Gly48 O N-5 Gly48 O . . . N P2 3.3 3.3
Asp29 N O-4 Asp29 N . . . O P3 3.0 2.9
Asp29 OD1 O-4 Asp29 OD2 . . . O P3 3.5 3.2
Water31/83 OH2 O-4 3.1 2.9
Water3 OH2 O-3 3.0 2.9
Gly27 O N-4 Gly27 O . . . N P1 3.4 3.3
Asp25 OD1 O-2 2.6 2.7
Asp25 OD2 O-2 3.1 2.8
Asp25� OD1 O-2 2.6 2.9
Asp25� OD2 O-2 3.1 2.9
Water3 OH2 O-1 2.8 2.7
Water2C OH2 N-3 3.0 3.1
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protease (Gly48� of N and Asp30� of OD2). This water net-
work compensates for lack of direct hydrogen bonds on the
P1�-P2� side of RO1.

The substrate-like interactions and the minimal involvement

of protease side chains could allow RO1 to circumvent specific
drug-resistant mutations. For instance, a specific interaction
between the Asp30 side chain and NFV results in a D30N
resistance mutation (Table 3) (19) while this interaction is
absent in RO1. Preliminary viral studies (4) indicate that viral
samples with D30N protease are inhibited by RO1 but not
NFV, which is consistent with this structural analysis.

van der Waals (VDW) interactions and comparison of RO1
with the substrate envelope. The RO1 atoms protruding out-
side the substrate envelope were visually evaluated (Fig. 3a)
and their distances from the nearest substrate positions were
also computed. An inhibitor atom is then implicated as “out-
lying” when it protrudes outside the substrate envelope and is
more than 1.4 Å away from the nearest substrate atom (aver-
aged over six substrate complexes). Seventeen outlying atoms
were identified (12 deviate by between 1.4 and 2.0 Å and five
deviate by �2.0 Å) (Fig. 3a and b). These outliers form VDW
interactions with Arg8, Asp25, Ala28, Asp29, Asp30, Val32,
Ile47, Ile50, Thr80, Pro81, Val82, and Ile84 (Fig. 3b). Many of
these residues (Arg8, Asp25, Ala28, Asp29, Thr80, and Pro81)
are highly conserved, mutating less than 1 percent of the time in
the patient population (18).

Structural interpretation of mutational patterns. RO1 ap-
pears to be a fairly robust inhibitor of resistant variants. One
protrusion beyond the substrate envelope does not appear in
and of itself to allow the development of resistance, as isolates
with I50V, V82A, and I84V are inhibited (4). However, in a
background of existing resistant mutations (M46L, G48V,
I62V, L63P, T74S, V77I, and V82A) after 21 viral passages,
V32I and I54V emerged and allowed growth under higher
levels of RO1 (4). In a structural context, Ile54 is located in the
flap and does not make contact with either the inhibitor or the
substrates, and thus rationalization of its mutational pattern is
not predictable from this analysis. However, the RO1 atoms
protruding outside the P2 and P2� regions make extensive
interactions with Val32 from both monomers (Fig. 3c). This
interaction may be perturbed by any modification of Val32
leading to drug resistance, and a V32I mutation may lead to a
VDW clash between residue 32 and RO1, possibly accounting
for the selection of this particular mutation.

The V32I mutation has also been observed with lopinavir (1,
12), and a comparison of lopinavir with the substrate envelope
revealed that certain outlying atoms make VDW interactions
with Val32 (7). For the inhibitor RO1 resistance appears to
occur when mutations arise at multiple positions that protrude
beyond the substrate envelope. Therefore utilization of the
substrate envelope in future inhibitor design is likely to help
assess and reduce the occurrence of drug resistance.

We thank Christina Ng for collecting ITC data, Claire Baldwin for
editorial assistance, Balaji Bhyravbhatla and Luca Leone for technical
help, and Mohan Somasundharan for discussion.

This research was supported by the National Institutes of Health
(grants R01-GM64347-05 and P01-GM66524-04).
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