27 research outputs found

    Removing the orientational degeneracy of the TS defect in 4H–SiC by electric fields and strain

    Get PDF
    AbstractWe present a photoluminescence (PL) study of the recently discovered TS defect in 4H silicon carbide. It investigates the influence of static electric fields and local strain on the spectral properties by means of low temperature (≈4 K) ensemble measurements. Upon application of static electric fields exerted by graphene electrodes, line splitting patterns are observed, which are investigated for four different angles of the electric field with respect to the principal crystallographic axes. More detailed information can be gained when additionally the excitation polarization angle is systematically varied. Altogether, the data allow for extracting the direction of the associated electric dipole moments, revealing three distinct orientations of the underlying TS defect inside the crystal’s basal plane. We also present three so far unreported PL lines (836.7 nm, 889.7 nm, 950.0 nm) as candidates for out-of-plane oriented counterparts of the TS lines. Similar to symmetry breaking by the electric field applied, strain can reduce the local symmetry. We investigate strain-induced line splitting patterns that also yield a threefold directedness of the TS lines in accordance with the Stark effect measurements. The response to both electrical and strain fields is remarkably strong, leading to line shifts of ±12 meV of the TS1 line. Combining our findings, we can narrow down possible geometries of the TS defect

    Intrinsic color centers in 4H-silicon carbide formed by heavy ion implantation and annealing

    Get PDF
    We study the generation and transformation of intrinsic luminescent centers in 4H-polytype of silicon carbide via heavy ion implantation and subsequent annealing. Defects induced by the implantation of germanium (Ge) or tin (Sn) have been characterized by photoluminescence (PL) spectra recorded at cryogenic temperatures. We find three predominant but as-yet-unidentified PL signatures (labeled as DI1–3) at the wavelength of 1002.8 nm (DI1), 1004.7 nm (DI2), and 1006.1 nm (DI3) after high dose implantation (> 4 × 1013 cm−2) and high temperature annealing (> 1700°C). The fact that the DI lines co-occur and are energetically close together suggest that they originate from the same defect. Regardless of the implanted ion (Ge or Sn), a sharp increase in their PL intensity is observed when the implantation damage becomes high (vacancy concentration > 1022 cm−3), indicating that the lines stem from an intrinsic defect caused by the damage. By tracking the PL signals after stepwise annealing, we examine how the overall intrinsic defects behave in the temperature range of 500 – 1800°C; the silicon vacancies formed by the implantation transform into either divacancies or antisite-vacancy pairs with annealing at about 1000°C. These spectral signatures are strongly reduced at 1200°C where the so-called TS defects are maximized in luminescence. As a final stage, the DI defects, which are most likely formed of antisites and vacancies, emerge at 1700°C. Our results provide a knowledge on how to incorporate and manipulate the intrinsic luminescent centers in SiC with ion implantation and annealing, paving the way for fully integrated quantum technology employing SiC

    Mobility in a Globalised World 2012

    Get PDF
    The term mobility has different meanings in the following science disciplines. In economics, mobility is the ability of an individual or a group to improve their economic status in relation to income and wealth within their lifetime or between generations. In information systems and computer science, mobility is used for the concept of mobile computing, in which a computer is transported by a person during normal use. By designing logistics networks, logistics creates the infrastructure for the mobility of people and goods. Electric mobility is one of today’s solutions from an engineering perspective to the problem of reducing the need for energy resources and environmental impact. Finally, for urban planning, mobility is the crunch question as to how to optimise the different needs for mobility and how to link different transportation systems. In this publication we have collected the ideas of practitioners, researchers, and government officials about the different modes of mobility in a globalised world, focusing on both domestic and international issues

    Label-Free Kinetic Studies of Hemostasis-Related Biomarkers Including D-Dimer Using Autologous Serum Transfusion.

    No full text
    The objective of this study was to evaluate the elimination kinetics of hemostasis-related biomarkers including the prothrombin activation fragment F1+2, thrombin-antithrombin complex (TAT), plasmin-α2-antiplasmin complex (PAP), and D-dimer in humans. Autologous serum was used as a biomarker source and infused into 15 healthy volunteers. Serum was prepared from whole blood in the presence of recombinant tissue-type plasminogen activator (final concentration 20 μg/mL) to induce plasmin generation required for PAP and D-dimer formation. Serum transfusions (50 mL/30 min) were well tolerated by all subjects. Endogenous thrombin formation was not induced by serum infusions as measured using a highly sensitive oligonucleotide-based enzyme capture assay. Median peak levels (x-fold increase over baseline) of F1+2, TAT, PAP, and D-dimer of 3.7 nmol/L (28.9), 393 ng/mL (189.6), 3,829 ng/mL (7.0), and 13.4 mg/L (34.2) were achieved at the end of serum infusions. During a 48 h lasting follow-up period all biomarkers showed elimination kinetics of a two-compartment model. Median (interquartile range) terminal half-lives were 1.9 (1.3-3.6) h for F1+2, 0.7 (0.7-2.6) h for TAT, and 10.8 (8.8-11.4) h for PAP. With 15.8 (13.1-23.1) h the D-dimer half-life was about twice as long as previously estimated from radiolabeling studies in animals and small numbers of human subjects. The serum approach presented here allows label-free and simultaneous analysis of the elimination kinetics of various hemostasis-related biomarkers. Based on these data changes in biomarker levels could more precisely used to estimate the activity level of the hemostatic system
    corecore