430 research outputs found
Towards Swarm Calculus: Urn Models of Collective Decisions and Universal Properties of Swarm Performance
Methods of general applicability are searched for in swarm intelligence with
the aim of gaining new insights about natural swarms and to develop design
methodologies for artificial swarms. An ideal solution could be a `swarm
calculus' that allows to calculate key features of swarms such as expected
swarm performance and robustness based on only a few parameters. To work
towards this ideal, one needs to find methods and models with high degrees of
generality. In this paper, we report two models that might be examples of
exceptional generality. First, an abstract model is presented that describes
swarm performance depending on swarm density based on the dichotomy between
cooperation and interference. Typical swarm experiments are given as examples
to show how the model fits to several different results. Second, we give an
abstract model of collective decision making that is inspired by urn models.
The effects of positive feedback probability, that is increasing over time in a
decision making system, are understood by the help of a parameter that controls
the feedback based on the swarm's current consensus. Several applicable
methods, such as the description as Markov process, calculation of splitting
probabilities, mean first passage times, and measurements of positive feedback,
are discussed and applications to artificial and natural swarms are reported
Modulating interaction times in an artificial society of robots
In a collaborative society, sharing information is advantageous for each individual as well as for the whole community. Maximizing the number of agent-to-agent interactions per time becomes an appealing behavior due to fast information spreading that maximizes the overall amount of shared information. However, if malicious agents are part of society, then the risk of interacting with one of them increases with an increasing number of interactions. In this paper, we investigate the roles of interaction rates and times (aka edge life) in artificial societies of simulated robot swarms. We adapt their social networks to form proper trust sub-networks and to contain attackers. Instead of sophisticated algorithms to build and administrate trust networks, we focus on simple control algorithms that locally adapt interaction times by changing only the robots' motion patterns. We successfully validate these algorithms in collective decision-making showing improved time to convergence and energy-efficient motion patterns, besides impeding the spread of undesired opinions
The impact of agent density on scalability in collective systems : noise-induced versus majority-based bistability
In this paper, we show that non-uniform distributions in swarms of agents have an impact on the scalability of collective decision-making. In particular, we highlight the relevance of noise-induced bistability in very sparse swarm systems and the failure of these systems to scale. Our work is based on three decision models. In the first model, each agent can change its decision after being recruited by a nearby agent. The second model captures the dynamics of dense swarms controlled by the majority rule (i.e., agents switch their opinion to comply with that of the majority of their neighbors). The third model combines the first two, with the aim of studying the role of non-uniform swarm density in the performance of collective decision-making. Based on the three models, we formulate a set of requirements for convergence and scalability in collective decision-making
Robotic sensing and stimuli provision for guided plant growth
Robot systems are actively researched for manipulation of natural plants, typically restricted to agricultural automation activities such as harvest, irrigation, and mechanical weed control. Extending this research, we introduce here a novel methodology to manipulate the directional growth of plants via their natural mechanisms for signaling and hormone distribution. An effective methodology of robotic stimuli provision can open up possibilities for new experimentation with later developmental phases in plants, or for new biotechnology applications such as shaping plants for green walls. Interaction with plants presents several robotic challenges, including short-range sensing of small and variable plant organs, and the controlled actuation of plant responses that are impacted by the environment in addition to the provided stimuli. In order to steer plant growth, we develop a group of immobile robots with sensors to detect the proximity of growing tips, and with diodes to provide light stimuli that actuate phototropism. The robots are tested with the climbing common bean, Phaseolus vulgaris, in experiments having durations up to five weeks in a controlled environment. With robots sequentially emitting blue light—peak emission at wavelength 465 nm—plant growth is successfully steered through successive binary decisions along mechanical supports to reach target positions. Growth patterns are tested in a setup up to 180 cm in height, with plant stems grown up to roughly 250 cm in cumulative length over a period of approximately seven weeks. The robots coordinate themselves and operate fully autonomously. They detect approaching plant tips by infrared proximity sensors and communicate via radio to switch between blue light stimuli and dormant status, as required. Overall, the obtained results support the effectiveness of combining robot and plant experiment methodologies, for the study of potentially complex interactions between natural and engineered autonomous systems
Space-Time Continuous Models of Swarm Robotic Systems: Supporting Global-to-Local Programming
A generic model in as far as possible mathematical closed-form was developed that predicts the behavior of large self-organizing robot groups (robot swarms) based on their control algorithm. In addition, an extensive subsumption of the relatively young and distinctive interdisciplinary research field of swarm robotics is emphasized. The connection to many related fields is highlighted and the concepts and methods borrowed from these fields are described shortly
A Reductionist Approach to Hypothesis-Catching for the Analysis of Self-Organizing Decision-Making Systems
A difficulty in analyzing self-organizing decision-making systems is their high dimension-ality which needs to be reduced to allow for deep insights. Following the hypothesis that such a dimensionality reduction can only be usefully determined in an act of a low-scale scientific discovery, a recipe for a data-driven, iterative process for determining, testing, and refining hypotheses about how the system operates is presented. This recipe relies on the definition of Markov chains and their analysis based on an urn model. Positive and negative feedback loops operating on global features of the system are detected by this analysis. The workflow of this analysis process is shown in two case studies investigating the BEECLUST algorithm and collective motion in locusts. The reported recipe has the potential to be generally applicable to self-organizing collective systems and is efficient due to an incremental approach.
A Robot to Shape your Natural Plant: The Machine Learning Approach to Model and Control Bio-Hybrid Systems
Bio-hybrid systems---close couplings of natural organisms with
technology---are high potential and still underexplored. In existing work,
robots have mostly influenced group behaviors of animals. We explore the
possibilities of mixing robots with natural plants, merging useful attributes.
Significant synergies arise by combining the plants' ability to efficiently
produce shaped material and the robots' ability to extend sensing and
decision-making behaviors. However, programming robots to control plant motion
and shape requires good knowledge of complex plant behaviors. Therefore, we use
machine learning to create a holistic plant model and evolve robot controllers.
As a benchmark task we choose obstacle avoidance. We use computer vision to
construct a model of plant stem stiffening and motion dynamics by training an
LSTM network. The LSTM network acts as a forward model predicting change in the
plant, driving the evolution of neural network robot controllers. The evolved
controllers augment the plants' natural light-finding and tissue-stiffening
behaviors to avoid obstacles and grow desired shapes. We successfully verify
the robot controllers and bio-hybrid behavior in reality, with a physical setup
and actual plants
Self-Organized Construction by Minimal Surprise
For the robots to achieve a desired behavior, we can program them directly,
train them, or give them an innate driver that makes the robots themselves
desire the targeted behavior. With the minimal surprise approach, we implant in
our robots the desire to make their world predictable. Here, we apply minimal
surprise to collective construction. Simulated robots push blocks in a 2D torus
grid world. In two variants of our experiment we either allow for emergent
behaviors or predefine the expected environment of the robots. In either way,
we evolve robot behaviors that move blocks to structure their environment and
make it more predictable. The resulting controllers can be applied in
collective construction by robots.Comment: Published in 2019 IEEE 4th International Workshops on Foundations and
Applications of Self* Systems (FAS*W
- …
