11 research outputs found

    Ceramic foam plates: a new tool for processing fresh radical prostatectomy specimens

    Get PDF
    Procurement of fresh tissue of prostate cancer is critical for biobanking and generation of xenograft models as an important preclinical step towards new therapeutic strategies in advanced prostate cancer. However, handling of fresh radical prostatectomy specimens has been notoriously challenging given the distinctive physical properties of prostate tissue and the difficulty to identify cancer foci on gross examination. Here, we have developed a novel approach using ceramic foam plates for processing freshly cut whole mount sections from radical prostatectomy specimens without compromising further diagnostic assessment. Forty-nine radical prostatectomy specimens were processed and sectioned from the apex to the base in whole mount slices. Putative carcinoma foci were morphologically verified by frozen section analysis. The fresh whole mount slices were then laid between two ceramic foam plates and fixed overnight. To test tissue preservation after this procedure, formalin-fixed and paraffin-embedded whole mount sections were stained with hematoxylin and eosin (H&E) and analyzed by immunohistochemistry, fluorescence, and silver in situ hybridization (FISH and SISH, respectively). There were no morphological artifacts on H&E stained whole mount sections from slices that had been fixed between two plates of ceramic foam, and the histological architecture was fully retained. The quality of immunohistochemistry, FISH, and SISH was excellent. Fixing whole mount tissue slices between ceramic foam plates after frozen section examination is an excellent method for processing fresh radical prostatectomy specimens, allowing for a precise identification and collection of fresh tumor tissue without compromising further diagnostic analysis

    Quantitative High-Resolution Genomic Analysis of Single Cancer Cells

    Get PDF
    During cancer progression, specific genomic aberrations arise that can determine the scope of the disease and can be used as predictive or prognostic markers. The detection of specific gene amplifications or deletions in single blood-borne or disseminated tumour cells that may give rise to the development of metastases is of great clinical interest but technically challenging. In this study, we present a method for quantitative high-resolution genomic analysis of single cells. Cells were isolated under permanent microscopic control followed by high-fidelity whole genome amplification and subsequent analyses by fine tiling array-CGH and qPCR. The assay was applied to single breast cancer cells to analyze the chromosomal region centred by the therapeutical relevant EGFR gene. This method allows precise quantitative analysis of copy number variations in single cell diagnostics

    Ceramic foam plates: a new tool for processing fresh radical prostatectomy specimens

    No full text
    Procurement of fresh tissue of prostate cancer is critical for biobanking and generation of xenograft models as an important preclinical step towards new therapeutic strategies in advanced prostate cancer. However, handling of fresh radical prostatectomy specimens has been notoriously challenging given the distinctive physical properties of prostate tissue and the difficulty to identify cancer foci on gross examination. Here, we have developed a novel approach using ceramic foam plates for processing freshly cut whole mount sections from radical prostatectomy specimens without compromising further diagnostic assessment. Forty-nine radical prostatectomy specimens were processed and sectioned from the apex to the base in whole mount slices. Putative carcinoma foci were morphologically verified by frozen section analysis. The fresh whole mount slices were then laid between two ceramic foam plates and fixed overnight. To test tissue preservation after this procedure, formalin-fixed and paraffin-embedded whole mount sections were stained with hematoxylin and eosin (H&E) and analyzed by immunohistochemistry, fluorescence, and silver in situ hybridization (FISH and SISH, respectively). There were no morphological artifacts on H&E stained whole mount sections from slices that had been fixed between two plates of ceramic foam, and the histological architecture was fully retained. The quality of immunohistochemistry, FISH, and SISH was excellent. Fixing whole mount tissue slices between ceramic foam plates after frozen section examination is an excellent method for processing fresh radical prostatectomy specimens, allowing for a precise identification and collection of fresh tumor tissue without compromising further diagnostic analysis

    The 80-W KTP GreenLight laser vaporization of the prostate versus transurethral resection of the prostate (TURP): adjusted analysis of 5-year results of a prospective non-randomized bi-center study

    No full text
    This study aims to compare long-term results of photoselective vaporization of the prostate (PVP) with an 80-W potassium titanyl phosphate (KTP) laser and monopolar transurethral resection of the prostate (TURP) in terms of efficacy, durability, and safety in an adjusted patient population. This prospective, non-randomized bi-center study included 120 (PVP) and 68 (TURP) patients in each arm. Patients were evaluated at 60months of follow-up. Data from 30 (PVP) and 31 (TURP) patients were available for analysis. The primary outcome measurement was the International Prostate Symptom Score (IPSS) at 5years. Secondary outcome measurements included voiding symptoms (quality of life (QoL) score), micturition parameters (maximal flow rate, Q max), post-void residual (PVR) volume, prostate-specific antigen (PSA) value, and reoperation rate. At study inclusion, voiding symptoms and micturition parameters were comparable between both groups. Age, prostate volume, and the proportion of patients with platelet aggregation inhibition or oral anticoagulation were significantly higher in the PVP group. No significant difference could be detected between patients available at 60months and those lost to follow-up in terms of preoperative characteristics in either group. Sixty months postoperatively, the improvement of IPSS, QoL, Q max, and PVR volume showed no significant difference between both groups. PSA reduction was significantly higher after TURP. The reoperation rate due to urethral stricture (PVP, 13%; TURP, none), bladder neck contracture (PVP, 3%; TURP, none), and persisting or recurrent adenoma (PVP, 18%; TURP, 3%) was significantly higher after the 80-W PVP. Eighty-watt PVP leads to comparable functional outcomes to TURP. However, during a long-term follow-up, significantly more reoperations are necessary after PVP with the 80-W KTP laser, suggesting inferior tissue ablation capacity of the 80-W KTP laser

    Analysis of AR/ARV7 Expression in Isolated Circulating Tumor Cells of Patients with Metastatic Castration-Resistant Prostate Cancer (SAKK 08/14 IMPROVE Trial)

    Get PDF
    Despite several treatment options and an initial high response rate to androgen deprivation therapy, the majority of prostate cancers will eventually become castration-resistant in the metastatic stage (mCRPC). Androgen receptor splice variant 7 (ARV7) is one of the best-characterized androgen receptor (AR) variants whose expression in circulating tumor cells (CTCs) has been associated with enzalutamide resistance. ARV7 expression analysis before and during enzalutamide treatment could identify patients requiring alternative systemic therapies. However, a robust test for the assessment of the ARV7 status in patient samples is still missing. Here, we implemented an RT-qPCR-based assay for detection of AR full length (ARFL)/ARV7 expression in CTCs for clinical use. Additionally, as a proof-of-principle, we validated a cohort of 95 mCRPC patients initiating first line treatment with enzalutamide or enzalutamide/metformin within a clinical trial. A total of 95 mCRPC patients were analyzed at baseline of whom 27.3% (26/95) had ARFL+ARV7+, 23.1% (22/95) had ARFL+ARV7-, 23.1% (22/95) had ARFL-ARV7-, and 1.1% (1/95) had ARFL-ARV7+ CTCs. In 11.6% (11/95), no CTCs could be isolated. A total of 25/95 patients had another CTC analysis at progressive disease, of whom 48% (12/25) were ARV7+. Of those, 50% (6/12) were ARV7- and 50% (6/12) were ARV7+ at baseline. Our results show that mRNA analysis of isolated CTCs in mCRPC is feasible and allows for longitudinal endocrine agent response monitoring and hence could contribute to treatment optimization in mCRPC

    Results of the phase I open label clinical trial SAKK 06/14 assessing safety of intravesical instillation of VPM1002BC, a recombinant mycobacterium Bacillus Calmette Guérin (BCG), in Patients With Non-Muscle Invasive Bladder Cancer and Previous Failure of Conventional BCG Therapy

    Get PDF
    Background: VPM1002BC is a modified mycobacterium Bacillus Calmette Guérin (BCG) for the treatment of non-muscle invasive bladder cancer (NMIBC). The genetic modifications are expected to result in better immunogenicity and less side effects. We report on patient safety and immunology of the first intravesical application of VPM1002BC in human. Methods: Six patients with BCG failure received a treatment of 6 weekly instillations with VPM1002BC. Patients were monitored for adverse events (AE), excretion of VPM1002BC and cytokines, respectively. Results: No DLT (dose limiting toxicity) occurred during the DLT-period. No grade ≥3 AEs occurred. Excretion of VPM1002BC in the urine was limited to less than 24 hours. Plasma levels of TNFα significantly increased after treatment and blood-derived CD4+ T cells stimulated with PPD demonstrated significantly increased intracellular GM-CSF and IFN expression. Conclusion: The intravesical application of VPM1002BC is safe and well tolerated by patients and results in a potential Th1 weighted immune response

    A Phase 1/2 Single-arm Clinical Trial of Recombinant Bacillus Calmette-Guérin (BCG) VPM1002BC Immunotherapy in Non-muscle-invasive Bladder Cancer Recurrence After Conventional BCG Therapy: SAKK 06/14

    No full text
    Background: VPM1002BC is a genetically modified Mycobacterium bovis bacillus CalmetteGuérin (BCG) strain with potentially improved immunogenicity and attenuation. Objective: To report on the efficacy, safety, tolerability and quality of life of intravesical VPM1002BC for the treatment of non–muscle-invasive bladder cancer (NMIBC) recurrence after conventional BCG therapy
    corecore