161 research outputs found

    The efficacy of HBOC-201 in ex situ gradual rewarming kidney perfusion in a rat model

    Get PDF
    Gradual rewarming from hypothermic to normothermic is a novel perfusion modality with superior outcome to sudden rewarming to normothermic. However, the identification of an oxygen carrier that could function at a temperature range from 4 to 7 degrees C or whether it is necessary to use oxygen carrier during kidney rewarming, remains unresolved. This study was designed to test the use of a hemoglobin-based oxygen carrier (HBOC) during gradual kidney rewarming as an alternative to simple dissolved oxygen. In this study, 10 rat kidneys were randomly divided into the control and the HBOC group. In the control group, no oxygen carrier was used during rewarming perfusion and the perfusion solution was oxygenated only by applying diffused carbogen flow. The protocol mimicked a donor after circulatory death (DCD) kidney transplantation, where after 30 minutes warm ischemia and 120 minutes cold storage in University of Wisconsin solution, the DCD kidneys underwent gradual rewarming from 10 to 37 degrees C during 90 minutes with or without HBOC. This was followed by 30 minutes of warm ischemia in room temperature to mimic the anastomosis time and 120 minutes of reperfusion at 37 degrees C to mimic the early post-transplant state of the graft. The HBOC group demonstrated superior kidney function which was highlighted by higher ultrafiltrate production, better glomerular filtration rate and improved sodium reabsorption. There was no significant difference between the 2 groups regarding the hemodynamics, tissue injury, and adenosine triphosphate levels. In conclusion, this study suggests better renal function recovery in DCD kidneys after rewarming with HBOC compared to rewarming without an oxygen carrier

    Tryptophan Metabolism via the Kynurenine Pathway:Implications for Graft Optimization during Machine Perfusion

    Get PDF
    Access to liver transplantation continues to be hindered by the severe organ shortage. Extended-criteria donor livers could be used to expand the donor pool but are prone to ischemia-reperfusion injury (IRI) and post-transplant graft dysfunction. Ex situ machine perfusion may be used as a platform to rehabilitate discarded or extended-criteria livers prior to transplantation, though there is a lack of data guiding the utilization of different perfusion modalities and therapeutics. Since amino acid derivatives involved in inflammatory and antioxidant pathways are critical in IRI, we analyzed differences in amino acid metabolism in seven discarded non-steatotic human livers during normothermic- (NMP) and subnormothermic-machine perfusion (SNMP) using data from untargeted metabolomic profiling. We found notable differences in tryptophan, histamine, and glutathione metabolism. Greater tryptophan metabolism via the kynurenine pathway during NMP was indicated by significantly higher kynurenine and kynurenate tissue concentrations compared to pre-perfusion levels. Livers undergoing SNMP demonstrated impaired glutathione synthesis indicated by depletion of reduced and oxidized glutathione tissue concentrations. Notably, ATP and energy charge ratios were greater in livers during SNMP compared to NMP. Given these findings, several targeted therapeutic interventions are proposed to mitigate IRI during liver machine perfusion and optimize marginal liver grafts during SNMP and NMP

    Subnormothermic Machine Perfusion of Steatotic Livers Results in Increased Energy Charge at the Cost of Anti-Oxidant Capacity Compared to Normothermic Perfusion

    Get PDF
    There continues to be significant debate regarding the most effective mode of ex situ machine perfusion of livers for transplantation. Subnormothermic (SNMP) and normothermic machine perfusion (NMP) are two methods with different benefits. We examined the metabolomic profiles of discarded steatotic human livers during three hours of subnormothermic or normothermic machine perfusion. Steatotic livers regenerate higher stores of ATP during SNMP than NMP. However, there is a significant depletion of available glutathione during SNMP, likely due to an inability to overcome the high energy threshold needed to synthesize glutathione. This highlights the increased oxidative stress apparent in steatotic livers. Rescue of discarded steatotic livers with machine perfusion may require the optimization of redox status through repletion or supplementation of reducing agents

    Tumor slice culture as a biologic surrogate of human cancer.

    Get PDF
    Background: The tumor microenvironment (TME) is critical to every aspect of cancer biology. Organotypic tumor slice cultures (TSCs) preserve the original TME and have demonstrated utility in predicting drug sensitivity, but the association between clinicopathologic parameters and Methods: One hundred and eight fresh tumor specimens from liver resections at a tertiary academic center were procured and precisely cut with a Vibratome to create 250 μm × 6 mm slices. These fixed-dimension TSCs were grown on polytetrafluoroethylene inserts, and their metabolic activities were determined by a colorimetric assay. Correlation between baseline activities and clinicopathologic parameters was assessed. Tissue CEA mRNA expression was determined by RNAseq. Results: By standardizing the dimensions of a slice, we found that adjacent tumor slices have equivalent metabolic activities, while those derived from different tumors exhibit \u3e30-fold range in baseline MTS absorbances, which correlated significantly with the percentage of tumor necrosis based on histologic assessment. Extending this to individual cancers, we were able to detect intra-tumoral heterogeneity over a span of a few millimeters, which reflects differences in tumor cell density and Ki-67 positivity. For colorectal cancers, tissue CEA expression based on RNAseq of tumor slices was found to correlate with clinical response to chemotherapies. Conclusions: We report a standardized method to assess and compare human cancer growth ex vivo across a wide spectrum of tumor samples. TSC reflects the state of tumor behavior and heterogeneity, thus providing a simple approach to study of human cancers with an intact TME

    Metabolic and lipidomic profiling of steatotic human livers during ex situ normothermic machine perfusion guides resuscitation strategies

    Get PDF
    There continues to be a significant shortage of donor livers for transplantation. One impediment is the discard rate of fatty, or steatotic, livers because of their poor post-transplant function. Steatotic livers are prone to significant ischemia-reperfusion injury (IRI) and data regarding how best to improve the quality of steatotic livers is lacking. Herein, we use normothermic (37°C) machine perfusion in combination with metabolic and lipidomic profiling to elucidate deficiencies in metabolic pathways in steatotic livers, and to inform strategies for improving their function. During perfusion, energy cofactors increased in steatotic livers to a similar extent as non-steatotic livers, but there were significant deficits in anti-oxidant capacity, efficient energy utilization, and lipid metabolism. Steatotic livers appeared to oxidize fatty acids at a higher rate but favored ketone body production rather than energy regeneration via the tricyclic acid cycle. As a result, lactate clearance was slower and transaminase levels were higher in steatotic livers. Lipidomic profiling revealed ω-3 polyunsaturated fatty acids increased in non-steatotic livers to a greater extent than in steatotic livers. The novel use of metabolic and lipidomic profiling during ex situ normothermic machine perfusion has the potential to guide the resuscitation and rehabilitation of steatotic livers for transplantation

    Split-Liver Ex Situ Machine Perfusion:A Novel Technique for Studying Organ Preservation and Therapeutic Interventions

    Get PDF
    Ex situ machine perfusion is a promising technology to help improve organ viability prior to transplantation. However, preclinical studies using discarded human livers to evaluate therapeutic interventions and optimize perfusion conditions are limited by significant graft heterogeneity. In order to improve the efficacy and reproducibility of future studies, a split-liver perfusion model was developed to allow simultaneous perfusion of left and right lobes, allowing one lobe to serve as a control for the other. Eleven discarded livers were surgically split, and both lobes perfused simultaneously on separate perfusion devices for 3 h at subnormothermic temperatures. Lobar perfusion parameters were also compared with whole livers undergoing perfusion. Similar to whole-liver perfusions, each lobe in the split-liver model exhibited a progressive decrease in arterial resistance and lactate levels throughout perfusion, which were not significantly different between right and left lobes. Split liver lobes also demonstrated comparable energy charge ratios. Ex situ split-liver perfusion is a novel experimental model that allows each graft to act as its own control. This model is particularly well suited for preclinical studies by avoiding the need for large numbers of enrolled livers necessary due to the heterogenous nature of discarded human liver research

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure
    • …
    corecore