11 research outputs found

    Overview Of Data Over Digital Subscrieber Line In Czech Republic.

    Get PDF
    Import 22/07/2015Tato bakalářská práce je zaměřena na rozbor technologie ADSL a to, jak je využívána a nabízena vybranými poskytovateli v České republice k užívání veřejným sektorem. V teoretické části pojednává o technologii ADSL a jejích vývojových verzích. Dále se zabývá řešením přípojky a vlivů rušení na vedení těchto přípojek. Hlavní částí práce je část praktická, ta se zabývá průzkumem poskytovatelů v České republice. Konkrétně využitím digitálních účastnických smyček poskytovateli, jejich nabídkou ADSL služeb pevného připojení k internetu a také doplňkových služeb a poplatků s pevným připojením spojených. Poslední částí práce je analýza možností připojení těchto služeb na konkrétní přípojku. Obsah této práce má napomoci běžným uživatelům k pochopení dané problematiky spojené se zřízením a výběrem ADSL služeb. Prostředky k řešení praktické části práce jsou především komunikace s poskytovateli ADSL služeb a získávání informací.This bachelor thesis is focused on the analysis of the technology ADSL as it is used in the public sector and offered by chosen providers in Czech Republic. In the theoretical part, it refers to the technology ADSL and its developmental versions. Furthermore, it examines the connection solution and the influence of interruption on conducting these connections. The main part of the thesis is the practical part which undertakes the research of providers in Czech Republic. Namely, it explores use of digital subscriber loops by providers, theirs ADSL service offers of the stable internet connection and its complementary services and charges. The final part of the thesis is the connection analysis of these complementary services on the specific connection. The content of this thesis should provide help to common users to understand given issues related to the selection and setting up ADSL services. Tools used for the practical part are particularly communication with ADSL service providers and acquiring appropriate information.440 - Katedra telekomunikační technikyvýborn

    Pull-down assays of zefn-A5<sup>ECD</sup>, mEphA4<sup>ECD</sup>, mEphA4<sup>LBD</sup> and zRET<sup>ECD</sup>.

    No full text
    <p>(A) Anti-Flag resin pull down of mEphA4<sup>LBD</sup> and untagged zRET<sup>ECD</sup> with immobilized zefn-A5<sup>ECD</sup>. The black arrows in Lanes 3 and 8 point to the mEphA4<sup>LBD</sup> pulled down by zefn-A5<sup>ECD</sup>. (B) Protein G bead pull down of zRET<sup>ECD</sup> and zefn-A5<sup>ECD</sup> with immobilized mEphA4<sup>LBD</sup>. The black arrows in Lanes 1 and 4 mark the zefn-A5<sup>ECD</sup> pulled-down by mEphA4. Molecular weight standards: PageRuler Plus standard protein ladder in Lanes 1(A) and 2(B). PD: samples eluted from the beads after pull down. Lanes without the PD label contain input protein samples as indicated.</p

    Coomassie-stained Native PAGE of zGDNF/zGFRα1<sup>ECD</sup>/zRET<sup>ECD</sup> and mEphA4<sup>LBD</sup>/zefn-A5<sup>ECD</sup> complexes.

    No full text
    <p>(A) BN PAGE image of zGDNF/zGFRα1<sup>ECD</sup>/zRET<sup>ECD</sup> complex. A molar ratio of 1:1:1 based on the monomeric forms of the proteins was used for zGDNF, zGFRα1<sup>ECD</sup> and zRET<sup>ECD</sup>. zRET<sup>ECD</sup> and zefn-A5<sup>ECD</sup> were incubated with a molar ratio of 1:2. The formation of zGDNF<sub>2</sub>/zGFRα1<sub>2</sub><sup>ECD</sup> complex was shown in Lane 3 (black arrow). The band corresponding to the ternary zGDNF<sub>2</sub>/zGFRα1<sup>ECD</sup>/zRET<sup>ECD</sup> complex is shown in Lanes 4 and 5 (black arrows). Lanes 4 and 5 are duplicates. The band highlighted with solid rectangle (Lane 4) was analyzed using mass spectrometry (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0198291#pone.0198291.s004" target="_blank">S1 Table</a>). (B) Clear Native (CN) PAGE of the mEphA4<sup>LBD</sup>/zefn-A5<sup>ECD</sup> complex. mEphA4<sup>LBD</sup>/zefn-A5<sup>ECD</sup> were incubated with a molar ratio of 1:2. The formation of mEphA4<sup>LBD</sup>/zefn-A5<sup>ECD</sup> complex is marked with a black arrow. (C) Anti-hlgG1-Fc Western blotting showing the mEphA4<sup>LBD</sup>/zefn-A5<sup>ECD</sup> complex formation in Lane 4 (black arrow).</p

    Measurement of the affinity of zefn-A5<sup>ECD</sup> for mEphA4<sup>LBD</sup> and zRET<sup>ECD</sup>.

    No full text
    <p>(A) BLItz sensorgrams showing mEphA4<sup>LBD</sup> binding to immobilized zefn-A5<sup>ECD</sup> at the indicated concentrations. (B) Saturation binding curve fitted with 1:1 binding model, using GraphPad Prism 6, showing the binding of mEphA4<sup>LBD</sup> to immobilized zefn-A5<sup>ECD</sup>. The binding model allowed non-specific binding, which occurs as shown by the fact that the baseline is not horizontal. The x-axis represents the concentration of mEphA4<sup>LBD</sup>. (C) Sensorgram showing untagged zRET<sup>ECD</sup> binding to immobilized zefn-A5<sup>ECD</sup> at a concentration of 110 μM. The binding profile was derived from three independent experiments and plotted with mean value against running time. (D) Sensorgram showing untagged zefn-A5<sup>ECD</sup> binding to immobilized zRET<sup>ECD</sup> at two concentrations of 104 and 160 μM.</p

    Schematic model of RET signaling.

    No full text
    <p>EphrinAs, GFRα1, GDNF and RET may interact together with Celsr3/Fzd3 [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0198291#pone.0198291.ref014" target="_blank">14</a>] to transduce efn-As reverse signaling. β integrins [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0198291#pone.0198291.ref009" target="_blank">9</a>] as well as leucine-rich repeat and immunoglobulin (LRIG) family proteins, such as LRIG1 [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0198291#pone.0198291.ref048" target="_blank">48</a>] and Linx [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0198291#pone.0198291.ref049" target="_blank">49</a>], may play a role in RET-mediated efn-As signaling. NCAM [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0198291#pone.0198291.ref050" target="_blank">50</a>,<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0198291#pone.0198291.ref051" target="_blank">51</a>]: neural cell adhesion molecule; LRIG1 [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0198291#pone.0198291.ref048" target="_blank">48</a>,<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0198291#pone.0198291.ref052" target="_blank">52</a>]: leucine-rich repeats and immunoglobulin-like domains; TrkB: tropomyosin receptor kinase B.</p

    Amino acid sequence alignment of zebrafish, human, rat, frog and fruit fly GFRα1.

    No full text
    <p>The red letters indicate sequence identity and blue letter sequence similarity. Dashed box indicates signal sequence. The dotted line indicates the start and end of domains 2 and 3. Solid box indicates the amino acid E323/D324 (rat), E326/E327 (zebrafish), D321/D322 (frog) predicted to be involved in hRET complex formation.</p

    zGDNF activates hRET phosphorylation as shown by anti-phospho-RET western blotting.

    No full text
    <p>The anti-phosphotyrosine (pY) Western blotting reflects the level of phosphorylated tyrosine residues in RET (upper panels); anti-RET western blotting (lower panels) demonstrates equal loading in different samples. hGDNF<sup>IC</sup>, hGDNF<sup>BV</sup> and hGDNF<sup>Ec</sup> produced hGDNF were used as controls at a range of concentrations stated in nM and media as a negative control.</p

    Biolayer inferometry (BLItz) of zebrafish proteins.

    No full text
    <p>Scatchard plot showing the binding of zRET<sup>ecd</sup> and zGDNF to pre-incubated zGFRα1 using BLItz. The x-axis shows the concentration of zGDNF and zRET<sup>ecd</sup>. The dashed line indicates the nonlinear curve fit plotted by GraphPad Prism 6 for single-site binding.</p

    Zebrafish GDNF alone and with zGFRα1 potently activated the human RET MAPK signaling.

    No full text
    <p>(A) luciferase activity readouts comparing different concentrations of zGDNF, using hGDNF<sup>BV</sup>, hGDNF<sup>Ec</sup> and hGDNF<sup>IC</sup> as positive controls. Yellow bar: hGDNF<sup>Ec</sup>, green bar: hGDNF<sup>BV</sup>; red bar: hGDNF<sup>IC</sup>; black bar: zGDNF. (B) luciferase activity readouts comparing zGDNF and zGFRα1 activation at different concentrations on the MG87 cell-line expressing RET only. Media, zGDNF and His-tagged zGFRα1 individually were used as negative controls. N = 3–4 repeats per experiment; statistically different from control <i>*p</i>< 0.01; ** <i>p</i><0.0001. Error bars indicate SEM.</p

    zGDNF supports the survival of cultured mammalian dopaminergic neurons.

    No full text
    <p>(A) the counted number of embryonic dopaminergic neurons in the presence of zGDNF and hGDNF<sup>IC</sup> versus negative control (media), (B) immunofluorescent staining of midbrain culture on 5DIV with a marker for DA neurons: TH (red) and nuclear dye DAPI (blue) comparing 0.27 nM of hGDNF<sup>IC</sup>, zGDNF and no GFL (control). Black bars: zGDNF; red bars: hGDNF<sup>IC</sup>; white bar: negative control. N = 4 indiviaul experiments per condition; statistically different from control ***p< 0.0007, **p< 0.003, *p<0.03.</p
    corecore