38 research outputs found

    Polarimetry and Astrometry of NIR Flares as Event Horizon Scale, Dynamical Probes for the Mass of Sgr A*

    Full text link
    We present new astrometric and polarimetric observations of flares from Sgr A* obtained with GRAVITY, the near-infrared interferometer at ESO's Very Large Telescope Interferometer (VLTI), bringing the total sample of well-covered astrometric flares to four and polarimetric ones to six, where we have for two flares good coverage in both domains. All astrometric flares show clockwise motion in the plane of the sky with a period of around an hour, and the polarization vector rotates by one full loop in the same time. Given the apparent similarities of the flares, we present a common fit, taking into account the absence of strong Doppler boosting peaks in the light curves and the EHT-measured geometry. Our results are consistent with and significantly strengthen our model from 2018: We find that a) the combination of polarization period and measured flare radius of around nine gravitational radii (9Rg≈1.5RISCO9 R_g \approx 1.5 R_{ISCO}, innermost stable circular orbit) is consistent with Keplerian orbital motion of hot spots in the innermost accretion zone. The mass inside the flares' radius is consistent with the 4.297×106  M⊙4.297 \times 10^6 \; \text{M}_\odot measured from stellar orbits at several thousand RgR_g. This finding and the diameter of the millimeter shadow of Sgr A* thus support a single black hole model. Further, b) the magnetic field configuration is predominantly poloidal (vertical), and the flares' orbital plane has a moderate inclination with respect to the plane of the sky, as shown by the non-detection of Doppler-boosting and the fact that we observe one polarization loop per astrometric loop. Moreover, c) both the position angle on sky and the required magnetic field strength suggest that the accretion flow is fueled and controlled by the winds of the massive, young stars of the clockwise stellar disk 1-5 arcsec from Sgr A*, in agreement with recent simulations.Comment: 10 pages, 12 figures. Submitted to A&

    Direct discovery of the inner exoplanet in the HD206893 system. Evidence for deuterium burning in a planetary-mass companion

    Full text link
    Long term precise radial velocity (RV) monitoring of the nearby star HD206893, as well as anomalies in the system proper motion, have suggested the presence of an additional, inner companion in the system. Here we describe the results of a multi-epoch search for the companion responsible for this RV drift and proper motion anomaly using the VLTI/GRAVITY instrument. Utilizing information from ongoing precision RV measurements with the HARPS spectrograph, as well as Gaia host star astrometry, we report a high significance detection of the companion HD206893c over three epochs, with clear evidence for Keplerian orbital motion. Our astrometry with ∌\sim50-100 ÎŒ\muarcsec precision afforded by GRAVITY allows us to derive a dynamical mass of 12.7−1.0+1.2^{+1.2}_{-1.0} MJup_{\rm Jup} and an orbital separation of 3.53−0.06+0.08^{+0.08}_{-0.06} au for HD206893c. Our fits to the orbits of both companions in the system utilize both Gaia astrometry and RVs to also provide a precise dynamical estimate of the previously uncertain mass of the B component, and therefore derive an age of 155±15155\pm15 Myr. We find that theoretical atmospheric/evolutionary models incorporating deuterium burning for HD206893c, parameterized by cloudy atmospheres provide a good simultaneous fit to the luminosity of both HD206893B and c. In addition to utilizing long-term RV information, this effort is an early example of a direct imaging discovery of a bona fide exoplanet that was guided in part with Gaia astrometry. Utilizing Gaia astrometry is expected to be one of the primary techniques going forward to identify and characterize additional directly imaged planets. Lastly, this discovery is another example of the power of optical interferometry to directly detect and characterize extrasolar planets where they form at ice-line orbital separations of 2-4\,au.Comment: Accepted to A&
    corecore