16 research outputs found

    Understanding the anomaly: reinterpreting Porolissum Roman town with emerging GPR and ER data

    Get PDF
    The Roman Porolissum (Romania) was first surveyed with magnetics in 2010. Local geology is propitious for magnetic prospection. In 2021 the Polish-Romanian team carried out a complementary ER and GPR survey. Emerging geophysical data allowed reinterpretation of the previous survey results. Complementary survey data and geological setting analysis yet enhanced the archaeological interpretation

    Comparative evaluation of the material of the artificial levees: A case study along the Tisza and Maros Rivers, Hungary

    Get PDF
    Artificial levees have major importance in protecting human lives and infrastructure as they are essential elements of the flood protection measures. Nevertheless, the lack of the necessary information about their structure and internal composition might cause high risks. To monitor their stability, integrated surveys are needed, including geophysical and geotechnical methods. Levees along the rivers in Hungary were constructed more than 150 years ago, and they were heightened several times; therefore, investigations are required to assure their performance in flood risk mitigation. Our investigation aimed to utilise non-invasive geophysical techniques, primarily electrical resistivity imaging, with the validation of geotechnical investigations to map and compare the compositional and structural variations of two very different levee sections along River Tisza and River Maros. Integrating the analysed drilling data with ERT profiles showed that the main composition of the investigated Tisza levee section is fine and medium silt with an average resistivity 30 Ωm, however, the investigated section of Maros levee was built of not only of fine and medium silt but also of medium and coarse sand exhibiting higher resistivity values reaching up to 2200 Ωm. Several physical parameters were measured to study the nature of constituting levee materials like moisture content, grain-size, porosity, bulk-density, saturated hydraulic conductivity, and resistivity. It was found that most of them show a connection with resistivity, but the hydraulic conductivity did not show a direct connection, however the latter could exhibit the aquitard nature of Tisza levee materials and the non-aquitard nature of Maros levee materials

    Comparative evaluation of the material of the artificial levees : A case study along the Tisza and Maros Rivers, Hungary

    Get PDF
    Artificial levees have major importance in protecting human livesand infrastructure as they are essential elements of the flood protectionmeasures. Nevertheless, the lack of the necessary information about theirstructure and internal composition might cause high risks. To monitor theirstability, integrated surveys are needed, including geophysical andgeotechnical methods. Levees along the rivers in Hungary were constructedmore than 150 years ago, and they were heightened several times; therefore,investigations are required to assure their performance in flood riskmitigation. Our investigation aimed to utilise non-invasive geophysicaltechniques, primarily electrical resistivity imaging, with the validationof geotechnical investigations to map and compare the compositional andstructural variations of two very different levee sections along RiverTisza and River Maros. Integrating the analysed drilling data with ERTprofiles showed that the main composition of the investigated Tisza leveesection is fine and medium silt with an average resistivity 30 Ωm, however,the investigated section of Maros levee was built of not only of fine andmedium silt but also of medium and coarse sand exhibiting higherresistivity values reaching up to 2200 Ωm. Several physical parameters weremeasured to study the nature of constituting levee materials like moisturecontent, grain-size, porosity, bulk-density, saturated hydraulicconductivity, and resistivity. It was found that most of them show aconnection with resistivity, but the hydraulic conductivity did not show adirect connection, however the latter could exhibit the aquitard nature ofTisza levee materials and the non-aquitard nature of Maros levee materials

    Rapid Assessment of 2022 Floods around the UNESCO Site of Mohenjo-Daro in Pakistan by Using Sentinel and Planet Labs Missions

    No full text
    This communication study aims to provide evidence on how Sentinel sensors and Copernicus Programme’s contributing missions can support heritage endangered by natural hazards. The recent catastrophic floods of 2022 in Pakistan, mainly in the Indus Valley, threatened one of the most iconic sites within the country; thus, the UNESCO World Heritage Site of Mohenjo-Daro was selected here as a case study. Even if the main area of the site was not directly affected by the floods but rather by the heavy rains, its landscape suffered profound damage. This study aims to report a combined remote-sensing methodology for a rapid assessment of the flooded areas around the site. By using Sentinel-1 radar data in combination with mid-resolution Sentinel-2 data and Planet Lab images, it was possible to accurately map the affected areas near the site. This approach can be used to better understand the extent of the affected areas and build a better recovery strategy. A near-real-time satellite-based investigation and observations combining various sensors and resolutions (Sentinel 1 and 2 images, as well as Planet Lab images) can provide valuable insights for local heritage managers

    Rapid Assessment of 2022 Floods around the UNESCO Site of Mohenjo-Daro in Pakistan by Using Sentinel and Planet Labs Missions

    No full text
    This communication study aims to provide evidence on how Sentinel sensors and Copernicus Programme’s contributing missions can support heritage endangered by natural hazards. The recent catastrophic floods of 2022 in Pakistan, mainly in the Indus Valley, threatened one of the most iconic sites within the country; thus, the UNESCO World Heritage Site of Mohenjo-Daro was selected here as a case study. Even if the main area of the site was not directly affected by the floods but rather by the heavy rains, its landscape suffered profound damage. This study aims to report a combined remote-sensing methodology for a rapid assessment of the flooded areas around the site. By using Sentinel-1 radar data in combination with mid-resolution Sentinel-2 data and Planet Lab images, it was possible to accurately map the affected areas near the site. This approach can be used to better understand the extent of the affected areas and build a better recovery strategy. A near-real-time satellite-based investigation and observations combining various sensors and resolutions (Sentinel 1 and 2 images, as well as Planet Lab images) can provide valuable insights for local heritage managers

    Observations of Archaeological Proxies through Phenological Analysis over the Megafort of Csanádpalota-Juhász T. tanya in Hungary Using Sentinel-2 Images

    No full text
    This study aims to investigate potential archaeological proxies at a large Bronze Age for- tification in Hungary, namely the Csanádpalota–Juhász T. tanya site, using open-access satellite data. Available Sentinel-2 images acquired between April 2017 and September 2022 were used. More than 700 images (727) were initially processed and filtered, accounting at the end of more than 400 (412) available calibrated Level 2A Sentinel images over the case study area. Sentinel-2 images were processed through image analysis. Based on pan-sharpened data, the visibility of crop marks was improved and enhanced by implementing orthogonal equations. Several crop marks, some still unknown, were revealed in this study. In addition, multi-temporal phenological observations were recorded on three archaeological proxies (crop marks) within the case study area, while an addi- tional area was selected for calibration purposes (agricultural field). Phenological observations were performed for at least four complete phenological cycles throughout the study period. Statistical comparisons between the selected archaeological proxies were applied using a range of vegetation indices. The overall results indicated that phenological observations could be used as archaeological proxies for detecting the formation of crop marks

    Using Geophysics to Characterize a Prehistoric Burial Mound in Romania

    No full text
    A geophysical investigation was carried across the M3 burial mound from Silvașu de Jos —Dealu Țapului, a tumuli necropolis in western Romania, where the presence of the Yamnaya people was certified archaeologically. For characterizing the inner structure of the mound, two conventional geophysical methods have been used: a geomagnetic survey and electrical resistivity tomography (ERT). The results allowed the mapping of the central features of the mound and the establishment of the relative stratigraphy of the mantle, which indicated at least two chronological phases. Archaeological excavations performed in the central part of the mound accurately validated the non-invasive geophysical survey and offered a valuable chronological record of the long-forgotten archaeological monument. Geophysical approaches proved to be an invaluable instrument for the exploration of the monument and suggest a fast constructive tool for the investigation of the entire necropolis which currently has a number of distinct mounds

    Geophysical Investigations within the Latus Dextrum of Porolissum Fort, Northwestern Romania—The Layout of a Roman Edifice

    No full text
    This paper summarizes the results of a recent geophysical investigation carried out at Porolissum, which is considered to be one of the most significant Roman sites in Romania. The geophysical survey was carried out within the latus dextrum of the fort, which is the same location that had been the subject of earlier geophysical surveys as well as older archaeological excavations (1970s) that had uncovered a multiroom building. A cesium vapor total field magnetometer and a multi-electrode resistivity meter for a dense Electrical Resistivity Tomography (ERT) survey were used. Eighty parallel ERT profiles in combination with the emerging total field magnetic data and an antecedent magnetic survey allowed us to complete a more precise interpretation regarding the building that once existed on the left side of Porolissum’s Principia (the commander’s house). In contrast to the magnetic survey, which only reveals a part of the building’s architecture, the ERT survey provides a comprehensive view of the structure’s layout. More than 20 rooms could be positively identified, and the existence of further rooms might be deduced from the data. The ERT scan revealed the existence of the building’s northern external wall as well, which is not reflected on the magnetic map. Because some parts of the building are not visible on the magnetic map, we can assume that the building was constructed with at least two types of rocks (magmatic and sedimentary). In addition to the archaeological interpretation of the geophysical anomalies, a number of discussions concerning the connection between our survey and the geology of the area were held. The complementarity of the magnetic and resistivity results prompted us to conceive a preliminary 3D reconstruction of the building. Even if the building function is unknown in the absence of reliable archaeological data, it could have been a storage building, a second praetorium, a valetudinarium (hospital), or an armamentarium (weapons storage building). The illustrative reconstruction was completed taking into consideration that the building was a Roman military hospital, which, based on the available data, may be considered a credible assumption

    The Role of Past Climatic Variability in Fluvial Terrace Formation, a Case Study from River Mureş (Maros), Romania

    No full text
    Fluvial terrace formation is a complex process governed by the interplay of climatic and tectonic forcings. From a climatic perspective, an incision is usually related to climatic transitions, while valley aggradation is attributed to glacial periods. We have reconstructed the formation of Late Pleistocene fluvial terraces along the middle, mountainous section of a temperate zone river (Mureş/Maros) in order to identify the roles of different climatic periods and potential vertical displacement in terrace development. Investigations were based on two profiles representing two different terrace levels. The profiles were subjected to sedimentological and detailed geochronological analyses using optically stimulated luminescence (OSL). The results indicated that the investigated terraces represent different incision events coinciding with climatic transition periods. However, a joint MIS 3 valley aggradation period can be identified at both of them. Thus, the relatively mild but highly variable climate of the MIS 3 facilitated sediment mobilization from upland catchments. On the other hand, there is no evidence of aggradation under the cold and stable climate of MIS 2. However, the tectonic setting favours incision at the site. Based on our results, we concluded that the timing of the main events was controlled primarily by climatic forcing. The terrace formation model recognised might also be applied at other rivers in the region

    Assessing the structure and composition of artificial levees along the Lower Tisza River (Hungary)

    Get PDF
    Levees are earth structures constructed along alluvial rivers and are considered to be one of the essential components of flood risk and natural hazard reduction. The preservation of their condition would require orderly monitoring. In Hungary, an over 4200 km long levee system was constructed from the 19th century on. Since then, many natural and anthropogenic processes, such as compaction, erosion, subsidence etc., could contribute to the slow but steady deformation of these structures. In the meantime , due to the lack of documentation, their structure and internal composition are still unclear in many sections. The present study uses different geophysical techniques to validate their efficiency in detecting the structure, composition and potential defects along a 3.6 km levee section of the Lower Tisza River, affected significantly by seepage and piping phenomena during floods. Measurements were made using Ground Penetrating Radar (GPR), Electrical Resistivity Tomography (ERT) and drillings. Information obtained by the different techniques was cross-checked and combined. This way, the potential of the applied survey strategy could be demonstrated, and the selected levee section could be assessed in terms of its structure and composition. Consequently, the major reasons for frequently occurring adverse flood phenomena at the site could be revealed. The survey approach outlined in the present paper can be applied extensively along lowland levee systems in the region and elsewhere
    corecore