5 research outputs found

    Survival prediction from clinico-genomic models - a comparative study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Survival prediction from high-dimensional genomic data is an active field in today's medical research. Most of the proposed prediction methods make use of genomic data alone without considering established clinical covariates that often are available and known to have predictive value. Recent studies suggest that combining clinical and genomic information may improve predictions, but there is a lack of systematic studies on the topic. Also, for the widely used Cox regression model, it is not obvious how to handle such combined models.</p> <p>Results</p> <p>We propose a way to combine classical clinical covariates with genomic data in a clinico-genomic prediction model based on the Cox regression model. The prediction model is obtained by a simultaneous use of both types of covariates, but applying dimension reduction only to the high-dimensional genomic variables. We describe how this can be done for seven well-known prediction methods: variable selection, unsupervised and supervised principal components regression and partial least squares regression, ridge regression, and the lasso. We further perform a systematic comparison of the performance of prediction models using clinical covariates only, genomic data only, or a combination of the two. The comparison is done using three survival data sets containing both clinical information and microarray gene expression data. Matlab code for the clinico-genomic prediction methods is available at <url>http://www.med.uio.no/imb/stat/bmms/software/clinico-genomic/</url>.</p> <p>Conclusions</p> <p>Based on our three data sets, the comparison shows that established clinical covariates will often lead to better predictions than what can be obtained from genomic data alone. In the cases where the genomic models are better than the clinical, ridge regression is used for dimension reduction. We also find that the clinico-genomic models tend to outperform the models based on only genomic data. Further, clinico-genomic models and the use of ridge regression gives for all three data sets better predictions than models based on the clinical covariates alone.</p

    Transcriptomic signals in blood prior to lung cancer focusing on time to diagnosis and metastasis

    Get PDF
    Recent studies have indicated that there are functional genomic signals that can be detected in blood years before cancer diagnosis. This study aimed to assess gene expression in prospective blood samples from the Norwegian Women and Cancer cohort focusing on time to lung cancer diagnosis and metastatic cancer using a nested case–control design. We employed several approaches to statistically analyze the data and the methods indicated that the case–control differences were subtle but most distinguishable in metastatic case–control pairs in the period 0–3 years prior to diagnosis. The genes of interest along with estimated blood cell populations could indicate disruption of immunological processes in blood. The genes identified from approaches focusing on alterations with time to diagnosis were distinct from those focusing on the case–control differences. Our results support that explorative analyses of prospective blood samples could indicate circulating signals of disease-related processes

    Principles and methods of integrative genomic analyses in cancer

    No full text
    corecore