590 research outputs found

    Challenges to the Aarhus convention: Public participation in the energy planning process in the United Kingdom

    Get PDF
    This article examines the tension between the democratic right of public participation on specific environmental issues, guaranteed by European Law, and the degree to which it is being challenged in the UK as a consequence of recent approaches to energy infrastructure planning. Recent trends in UK government policy frameworks seem both to threaten effective public participation and challenge EU planning strategy, in particular those outlined in the Aarhus convention. The research outlined in this study involves an assessment of the changing context of planning and energy policy, in addition to recent changes in legislation formulation in the UK. The research findings, derived from an extensive interview process of elite stakeholders engaged in policy and legislation formulation in the UK and the EU provide a new categorisation system of stakeholders in energy policy that can be utilised in future research. The article concludes with a second order analysis of the interviewee data and provides solutions to increase public participation in the planning of energy infrastructure that emerge from the different perspectives

    Sequential Electrocoagulation-Electrooxidation For Virus Mitigation in Drinking Water

    Get PDF
    Electrochemical water treatment is a promising alternative for small-scale and remote water systems that lack operational capacity or convenient access to reagents for chemical coagulation and disinfection. In this study, the mitigation of viruses was investigated using electrocoagulation as a pretreatment prior to electrooxidation treatment using boron-doped diamond electrodes. This research is the first to investigate a sequential electrocoagulation-electrooxidation treatment system for virus removal. Bench-scale, batch reactors were used to evaluate mitigation of viruses in variable water quality via: a) electrooxidation, and b) a sequential electrocoagulation-electrooxidation treatment train. Electrooxidation of two bacteriophages, MS2 and ΦX174, was inhibited by natural organic matter and turbidity, indicating the probable need for pretreatment. However, the electrocoagulation-electrooxidation treatment train was beneficial only in the model surface waters employed. In model groundwaters, electrocoagulation alone was as good or better than the combined electrocoagulation-electrooxidation treatment train. Reduction of human echovirus was significantly lower than one or both bacteriophages in all model waters, though bacteriophage ΦX174 was a more representative surrogate than MS2 in the presence of natural organic matter and turbidity. Compared to conventional treatment by ferric salt coagulant and free chlorine disinfection, the electrocoagulation-electrooxidation system was less effective in model surface waters but more effective in model groundwaters. Sequential electrocoagulation-electrooxidation was beneficial for some applications, though practical considerations may currently outweigh the benefits

    Analysis of Cells Targeted by Salmonella Type III Secretion In Vivo

    Get PDF
    The type III secretion systems (TTSS) encoded in Salmonella pathogenicity island-1 and -2 (SPI-1 and -2) are virulence factors required for specific phases of Salmonella infection in animal hosts. However, the host cell types targeted by the TTSS have not been determined. To investigate this, we have constructed translational fusions between the ß-lactamase reporter and a broad array of TTSS effectors secreted via SPI-1, SPI-2, or both. Secretion of the fusion protein to a host cell was determined by cleavage of a specific fluorescent substrate. In cultured cells, secretion of all six effectors could be observed. However, two to four days following i.p. infection of mice, only effectors secreted by SPI-2 were detected in spleen cells. The cells targeted were identified via staining with nine different cell surface markers followed by FACS analysis as well as by conventional cytological methods. The targeted cells include B and T lymphocytes, neutrophils, monocytes, and dendritic cells, but not mature macrophages. To further investigate replication in these various cell types, Salmonella derivatives were constructed that express a red fluorescent protein. Bacteria could be seen in each of the cell types above; however, most viable bacteria were present in neutrophils. We find that Salmonella is capable of targeting most phagocytic and non-phagocytic cells in the spleen but has a surprisingly high preference for neutrophils. These findings suggest that Salmonella specifically target splenic neutrophils presumably to attenuate their microbicidal functions, thereby promoting intracellular survival and replication in the mouse

    Developing a Pilot Case and Modelling the Development of a Large European CO<sub>2</sub> Transport Infrastructure -The GATEWAY H2020 Project

    Get PDF
    The H2020 GATEWAY project aims to develop a comprehensive model Pilot Case which, intentionally, will pave the ground for CCS deployment in Europe. It will result from the assessment of, technical, commercial, judicial and societal issues related to a future CO2 transport infrastructure. The Pilot Case derived on this basis, will emphasize a gateway for CO2 transport in the North Sea Basin. Four potential pilot cases have been evaluated through a combination of techno-economic modelling of the individual cases and evaluation against more qualitative criteria. The chosen Pilot Case, Rotterdam Nucleus, will be refined and developed during the remaining period of the GATEWAY project. To maximise impact, the GATEWAY project adapts its work to lay the foundation for a future application to a European ‘Project of Common Interest’ (PCI). Continuous dialogue with the most relevant stakeholders is an important part of GATEWAY, as a Coordination and Support Action (CSA) H2020 project

    Could misreporting of condom use explain the observed association between injectable hormonal contraceptives and HIV acquisition risk?

    Get PDF
    OBJECTIVE: Some observational studies have suggested an association between the use of hormonal contraceptives (HC) and HIV acquisition. One major concern is that differential misreporting of sexual behavior between HC users and nonusers may generate artificially inflated risk estimates. STUDY DESIGN: We developed an individual-based model that simulates the South African HIV serodiscordant couples analyzed for HC-HIV risk by Heffron et al. (2012). We varied the pattern of misreporting condom use between HC users and nonusers and reproduced the trial data under the assumption that HC use is not associated with HIV risk. The simulated data were analyzed using Cox proportional hazards models, adjusting for the reported level of condom use. RESULTS: If HC users overreport condom use more than nonusers, an apparent excess risk could be observed even without any biological effect of HC on HIV acquisition. With 45% overreporting by HC users (i.e., 9 out of every 20 sex acts reported with condoms are actually unprotected) and accurate condom reporting by nonusers, a true null effect can be inflated to give an observed hazard ratio (HR̂) of 2.0. In a different population with lower overall reported condom use, artificially high HR̂s can only be generated if non-HC users underreport condom use. CONCLUSION: Differential condom misreporting can theoretically produce inflated HR̂ values for an association between HC and HIV even without a true association. However, to produce a doubling of HIV risk that is entirely spurious requires substantially different levels of misreporting among HC users and nonusers, which may be unrealistic. IMPLICATIONS: Considerably differential amounts of condom use misreporting by HC users and nonusers would be needed to produce entirely spurious observed levels of excess HIV acquisition risk among HC users when there is actually no true association

    Justice in solar energy development.

    Get PDF
    To achieve national energy and climate targets across the world, there is a key focus on solar energy development. It is clear from literature that many countries have enormous, under-utilised potentials for solar energy, which can significantly change their energy mix and contribute to the low-carbon ambitions they signed up to under the 2015 Paris Agreement. Our research highlights that there are benefits to solar energy development from a law and economic perspective that are still underexplored. These benefits centre on justice and on how solar energy increases justice within the energy system. From a legal perspective, we review 72 countries and their introduction of energy law with respect to solar energy development. Our analysis illustrates that in some developing countries (new) legislation was not associated with a significant increase in the share of solar energy in the energy mix. We then highlight how to achieve solar energy development through law that can provide certainty for investment. Furthermore, we stress the importance of flexibility that allows the full potential of solar energy to be realised within the energy system. The corresponding form of flexibility justice, combining law and economics, can contribute to increased economic welfare based on market reforms that centre on new market design and market access, while ensuring that it keeps pace with ongoing developments in technology, cost, and ownership

    Sequence Profile of the Parallel β Helix in the Pectate Lyase Superfamily

    Get PDF
    The parallel β helix structure found in the pectatelyasesuperfamily has been analyzed in detail. A comparative analysis of known structures has revealed a unique sequenceprofile, with a strong positional preference for specific amino acids oriented toward the interior of the parallel β helix. Using the unique sequenceprofile, search patterns have been constructed and applied to the sequence databases to identify a subset of proteins that are likely to fold into the parallel β helix. Of the 19 families identified, 39% are known to be carbohydrate-binding proteins, and 50% belong to a broad category of proteins with sequences containing leucine-rich repeats (LRRs). The most striking result is the sequence match between the search pattern and four contiguous segments of internalin A, a surface protein from the bacterial pathogenListeria monocytogenes.A plausible model of the repetitive LRR sequences of internalin A has been constructed and favorable 3D–1D profile scores have been calculated. Moreover, spectroscopic features characteristic of the parallel β helix topology in the pectate lyases are present in the circular dichroic spectrum of internalin A. Altogether, the data support the hypothesis that sequence search patterns can be used to identify proteins, including a subset of LRR proteins, that are likely to fold into the parallel β helix

    Technologies and Approaches to Elucidate and Model the Virulence Program of Salmonella

    Get PDF
    Salmonella is a primary cause of enteric diseases in a variety of animals. During its evolution into a pathogenic bacterium, Salmonella acquired an elaborate regulatory network that responds to multiple environmental stimuli within host animals and integrates them resulting in fine regulation of the virulence program. The coordinated action by this regulatory network involves numerous virulence regulators, necessitating genome-wide profiling analysis to assess and combine efforts from multiple regulons. In this review we discuss recent high-throughput analytic approaches used to understand the regulatory network of Salmonella that controls virulence processes. Application of high-throughput analyses have generated large amounts of data and necessitated the development of computational approaches for data integration. Therefore, we also cover computer-aided network analyses to infer regulatory networks, and demonstrate how genome-scale data can be used to construct regulatory and metabolic systems models of Salmonella pathogenesis. Genes that are coordinately controlled by multiple virulence regulators under infectious conditions are more likely to be important for pathogenesis. Thus, reconstructing the global regulatory network during infection or, at the very least, under conditions that mimic the host cellular environment not only provides a bird's eye view of Salmonella survival strategy in response to hostile host environments but also serves as an efficient means to identify novel virulence factors that are essential for Salmonella to accomplish systemic infection in the host
    corecore