111 research outputs found
A semi-automated software program to assess the impact of second reads in prostate MRI for equivocal lesions: results from a UK tertiary referral centre
Purpose: To investigate the utility of a prostate magnetic resonance imaging (MRI) second read using a semi-automated software program in the one-stop clinic, where patients undergo multiparametric MRI, review and biopsy planning in one visit. We looked at concordance between readers for patients with equivocal scans and the possibility for biopsy deferral in this group. Methods: We present data from 664 consecutive patients. Scans were reported by seven different expert genitourinary radiologists using dedicated software (MIM®) and a Likert scale. All scans were rescored by another expert genitourinary radiologist using a customised workflow for second reads that includes annotated biopsy contours for accurate visual targeting. The number of scans in which a biopsy could have been deferred using biopsy results and prostate specific antigen density was assessed. Gleason score ≥ 3 + 4 was considered clinically significant disease. Concordance between first and second reads for equivocal scans (Likert 3) was evaluated. Results: A total of 209/664 (31%) patients scored Likert 3 on first read, 128 of which (61%) were concordant after second read. 103/209 (49%) of patients with Likert 3 scans were biopsied, with clinically significant disease in 31 (30%) cases. Considering Likert 3 scans that were both downgraded and biopsied using the workflow-generated biopsy contours, 25/103 (24%) biopsies could have been deferred. Conclusions: Implementing a semi-automated workflow for accurate lesion contouring and targeting biopsies is helpful during the one-stop clinic. We observed a reduction of indeterminate scans after second reading and almost a quarter of biopsies could have been deferred, reducing the potential biopsy-related side effects
NeuroSAFE frozen section during robot-assisted radical prostatectomy (RARP): Peri-operative and Histopathological Outcomes from the NeuroSAFE PROOF Feasibility Randomised Controlled Trial
Objectives:
To report on the methods, peri‐operative outcomes and histopathological concordance between frozen and final section from the NeuroSAFE PROOF Feasibility study (NCT03317990).
Patients and Methods:
Between May 2018 and March 2019 49 men at 2 UK centres underwent robot‐assisted robotic prostatectomy (RARP). 25 men were randomised to NeuroSAFE RARP (intervention arm) vs. 24 men to standard RARP (control arm). Frozen section was compared to final paraffin section margin assessment in the 25 men in the NeuroSAFE arm. Operation timings and complications were collected prospectively in both arms.
Results:
50 NVB from 25 patients in the NeuroSAFE arm were analysed. When analysed by each pathological section (n=250, average 5 per side) we note sensitivity 100%, specificity 99.2%, AUC was 0.994 (95% CI 0.985 to 1, P= <.001). On an NVB basis (n=50) we note sensitivity of 100%, specificity 92.7%, and AUC of 0.963 (95% CI 0.914 to 1, p = <0.001. NeuroSAFE RARP lasted a mean 3 hours 16 minutes (knife to skin to off table, 95% CI 3 hrs 2 mins ‐ 3 hrs 30 mins) compared to 2 hours 14 minutes (2 hrs 2 mins ‐ 2 hours 25 mins, P=<0.001) for standard RARP. There was no morbidity associated with the additional length of operation in the NeuroSAFE arm.
Conclusion:
This feasibility study demonstrates the safety, the reproducibility and the excellent histopathological concordance of the NeuroSAFE technique in the NeuroSAFE PROOF trial. Though the technique increases the duration of RARP, this does not cause short‐term harm. Confirmation of feasibility has led to the opening of the fully powered NeuroSAFE PROOF RCT, which is currently underway at 4 sites in the UK
SMARCB1 regulates the hypoxic stress response in sickle cell trait during the pathogenesis of renal medullary carcinoma.
View full abstracthttps://openworks.mdanderson.org/leading-edge/1058/thumbnail.jp
SMARCB1 Regulates the Hypoxic Stress Response in Sickle Cell Trait
Renal medullary carcinoma (RMC) is an aggressive kidney cancer that almost exclusively develops in individuals with sickle cell trait (SCT) and is always characterized by loss of the tumor suppressor SMARCB1. Because renal ischemia induced by red blood cell sickling exacerbates chronic renal medullary hypoxia in vivo, we investigated whether the loss of SMARCB1 confers a survival advantage under the setting of SCT. Hypoxic stress, which naturally occurs within the renal medulla, is elevated under the setting of SCT. Our findings showed that hypoxia-induced SMARCB1 degradation protected renal cells from hypoxic stress. SMARCB1 wild-type renal tumors exhibited lower levels of SMARCB1 and more aggressive growth in mice harboring the SCT mutation in human hemoglobin A (HbA) than in control mice harboring wild-type human HbA. Consistent with established clinical observations, SMARCB1-null renal tumors were refractory to hypoxia-inducing therapeutic inhibition of angiogenesis. Further, reconstitution of SMARCB1 restored renal tumor sensitivity to hypoxic stress in vitro and in vivo. Together, our results demonstrate a physiological role for SMARCB1 degradation in response to hypoxic stress, connect the renal medullary hypoxia induced by SCT with an increased risk of SMARCB1-negative RMC, and shed light into the mechanisms mediating the resistance of SMARCB1-null renal tumors against angiogenesis inhibition therapies
Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses
available in PMC 2011 September 1Vaccines based on recombinant proteins avoid the toxicity and antivector immunity associated with live vaccine (for example, viral) vectors, but their immunogenicity is poor, particularly for CD8+ T-cell responses. Synthetic particles carrying antigens and adjuvant molecules have been developed to enhance subunit vaccines, but in general these materials have failed to elicit CD8+ T-cell responses comparable to those for live vectors in preclinical animal models. Here, we describe interbilayer-crosslinked multilamellar vesicles formed by crosslinking headgroups of adjacent lipid bilayers within multilamellar vesicles. Interbilayer-crosslinked vesicles stably entrapped protein antigens in the vesicle core and lipid-based immunostimulatory molecules in the vesicle walls under extracellular conditions, but exhibited rapid release in the presence of endolysosomal lipases. We found that these antigen/adjuvant-carrying vesicles form an extremely potent whole-protein vaccine, eliciting endogenous T-cell and antibody responses comparable to those for the strongest vaccine vectors. These materials should enable a range of subunit vaccines and provide new possibilities for therapeutic protein delivery.Ragon Institute of MGH, MIT and HarvardBill & Melinda Gates FoundationUnited States. Dept. of Defense (contract W911NF-07-D-0004)National Institutes of Health (U.S.) (P41RR002250)National Institutes of Health (U.S.) (RC2GM092599
Drug-Class Specific Impact of Antivirals on the Reproductive Capacity of HIV
Predictive markers linking drug efficacy to clinical outcome are a key component in the drug discovery and development process. In HIV infection, two different measures, viral load decay and phenotypic assays, are used to assess drug efficacy in vivo and in vitro. For the newly introduced class of integrase inhibitors, a huge discrepancy between these two measures of efficacy was observed. Hence, a thorough understanding of the relation between these two measures of drug efficacy is imperative for guiding future drug discovery and development activities in HIV. In this article, we developed a novel viral dynamics model, which allows for a mechanistic integration of the mode of action of all approved drugs and drugs in late clinical trials. Subsequently, we established a link between in vivo and in vitro measures of drug efficacy, and extract important determinants of drug efficacy in vivo. The analysis is based on a new quantity—the reproductive capacity—that represents in mathematical terms the in vivo analog of the read-out of a phenotypic assay. Our results suggest a drug-class specific impact of antivirals on the total amount of viral replication. Moreover, we showed that the (drug-)target half life, dominated by immune-system related clearance processes, is a key characteristic that affects both the emergence of resistance as well as the in vitro–in vivo correlation of efficacy measures in HIV treatment. We found that protease- and maturation inhibitors, due to their target half-life, decrease the total amount of viral replication and the emergence of resistance most efficiently
Cause of Death and Predictors of All-Cause Mortality in Anticoagulated Patients With Nonvalvular Atrial Fibrillation : Data From ROCKET AF
M. Kaste on työryhmän ROCKET AF Steering Comm jäsen.Background-Atrial fibrillation is associated with higher mortality. Identification of causes of death and contemporary risk factors for all-cause mortality may guide interventions. Methods and Results-In the Rivaroxaban Once Daily Oral Direct Factor Xa Inhibition Compared with Vitamin K Antagonism for Prevention of Stroke and Embolism Trial in Atrial Fibrillation (ROCKET AF) study, patients with nonvalvular atrial fibrillation were randomized to rivaroxaban or dose-adjusted warfarin. Cox proportional hazards regression with backward elimination identified factors at randomization that were independently associated with all-cause mortality in the 14 171 participants in the intention-to-treat population. The median age was 73 years, and the mean CHADS(2) score was 3.5. Over 1.9 years of median follow-up, 1214 (8.6%) patients died. Kaplan-Meier mortality rates were 4.2% at 1 year and 8.9% at 2 years. The majority of classified deaths (1081) were cardiovascular (72%), whereas only 6% were nonhemorrhagic stroke or systemic embolism. No significant difference in all-cause mortality was observed between the rivaroxaban and warfarin arms (P=0.15). Heart failure (hazard ratio 1.51, 95% CI 1.33-1.70, P= 75 years (hazard ratio 1.69, 95% CI 1.51-1.90, P Conclusions-In a large population of patients anticoagulated for nonvalvular atrial fibrillation, approximate to 7 in 10 deaths were cardiovascular, whereasPeer reviewe
Open Data from the Third Observing Run of LIGO, Virgo, KAGRA, and GEO
The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in 2019 April and lasting six months, O3b starting in 2019 November and lasting five months, and O3GK starting in 2020 April and lasting two weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main data set, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages
Open data from the third observing run of LIGO, Virgo, KAGRA and GEO
The global network of gravitational-wave observatories now includes five
detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600.
These detectors collected data during their third observing run, O3, composed
of three phases: O3a starting in April of 2019 and lasting six months, O3b
starting in November of 2019 and lasting five months, and O3GK starting in
April of 2020 and lasting 2 weeks. In this paper we describe these data and
various other science products that can be freely accessed through the
Gravitational Wave Open Science Center at https://gwosc.org. The main dataset,
consisting of the gravitational-wave strain time series that contains the
astrophysical signals, is released together with supporting data useful for
their analysis and documentation, tutorials, as well as analysis software
packages.Comment: 27 pages, 3 figure
- …