150 research outputs found
Motivations, expectations and experiences of Australian rural and regional planners
Despite playing an extremely important role in shaping communities, the role and contribution of planners is not widely understood or acknowledged. At the same time, there is a shortage of planners in Australia, especially in non-urban areas. Thus, though an online survey of 185 rural and regional planners, this research explores their motivations, expectations and experiences. Most enjoyed and felt confident in their role, explaining that they valued the relaxed family orientated rural lifestyle and the varied nature of the planning work. Although they sometimes felt isolated, the non-urban location provided quicker progression to senior roles, the ability to engage directly with the community and to see the consequences of their decisions. Only half felt their education had prepared them well for their role, citing gaps in terms of computerised modelling, team leadership and conflict resolution skills. Their feedback centred on providing a more practical course, focussing more on regional planning, and encouraging urban and rural experience placements. As the first study to quantifiably explore rural and regional Australian planners perceptions of their role and challenges, the findings illustrate current experiences, key planning challenges, perceived educational gaps and future priorities.Rural and regional planners; expectations; experiences; Australia
Challenging the Perceptions of Human Tendon Allografts: Influence of Donor Age, Sex, Height, and Tendon on Biomechanical Properties
Background:
The use of allograft tendons has increased for primary and revision anterior cruciate ligament reconstruction, but allograft supply is currently limited to a narrow range of tendons and donors up to the age of 65 years. Expanding the range of donors and tendons could help offset an increasing clinical demand.
Purpose:
To investigate the effects of donor age, sex, height, and specific tendon on the mechanical properties of a range of human lower leg tendons.
Study Design:
Descriptive laboratory study.
Methods:
Nine tendons were retrieved from 39 fresh-frozen human cadaveric lower legs (35 donors [13 female, 22 male]; age, 49-99 years; height, 57-85 inches [145-216 cm]) including: Achilles tendon, tibialis posterior and anterior, fibularis longus and brevis, flexor and extensor hallucis longus, plantaris, and flexor digitorum longus. Tendons underwent tensile loading to failure measuring cross-sectional area (CSA), maximum load, strain at failure, ultimate tensile strength, and elastic modulus. Results from 332 tendons were analyzed using mixed-effects linear regression, accounting for donor age, sex, height, and weight.
Results:
Mechanical properties were significantly different among tendons and were substantially greater than the effects of donor characteristics. Significant effects of donor sex, age, and height were limited to specific tendons: Achilles tendon, tibialis posterior, and tibialis anterior. All other tendons were unaffected. The Achilles tendon was most influenced by donor variables: greater CSA in men (Ξ² = 15.45 mm2; Ε idΓ‘k adjusted P < .0001), decreased maximum load with each year of increased age (Ξ² = β17.20 N per year; adjusted P = .0253), and increased CSA (Ξ² = 1.92 mm2 per inch; adjusted P < .0001) and maximum load (Ξ² = 86.40 N per inch; adjusted P < .0001) with each inch of increased height.
Conclusion:
Mechanical properties vary significantly across different human tendons. The effects of donor age, sex, and height are relatively small, are limited to specific tendons, and affect different tendons uniquely. The findings indicate that age negatively affected only the Achilles tendon (maximum load) and challenge the exclusion of donors aged >65 years across all tendon grafts.
Clinical Relevance:
The findings support including a broader range of tendons for use as allografts for anterior cruciate ligament reconstruction and reviewing the current exclusion criterion of donors aged >65 years
Probing sporadic and familial Alzheimer's disease using induced pluripotent stem cells.
Our understanding of Alzheimer's disease pathogenesis is currently limited by difficulties in obtaining live neurons from patients and the inability to model the sporadic form of the disease. It may be possible to overcome these challenges by reprogramming primary cells from patients into induced pluripotent stem cells (iPSCs). Here we reprogrammed primary fibroblasts from two patients with familial Alzheimer's disease, both caused by a duplication of the amyloid-Ξ² precursor protein gene (APP; termed APP(Dp)), two with sporadic Alzheimer's disease (termed sAD1, sAD2) and two non-demented control individuals into iPSC lines. Neurons from differentiated cultures were purified with fluorescence-activated cell sorting and characterized. Purified cultures contained more than 90% neurons, clustered with fetal brain messenger RNA samples by microarray criteria, and could form functional synaptic contacts. Virtually all cells exhibited normal electrophysiological activity. Relative to controls, iPSC-derived, purified neurons from the two APP(Dp) patients and patient sAD2 exhibited significantly higher levels of the pathological markers amyloid-Ξ²(1-40), phospho-tau(Thrβ231) and active glycogen synthase kinase-3Ξ² (aGSK-3Ξ²). Neurons from APP(Dp) and sAD2 patients also accumulated large RAB5-positive early endosomes compared to controls. Treatment of purified neurons with Ξ²-secretase inhibitors, but not Ξ³-secretase inhibitors, caused significant reductions in phospho-Tau(Thrβ231) and aGSK-3Ξ² levels. These results suggest a direct relationship between APP proteolytic processing, but not amyloid-Ξ², in GSK-3Ξ² activation and tau phosphorylation in human neurons. Additionally, we observed that neurons with the genome of one sAD patient exhibited the phenotypes seen in familial Alzheimer's disease samples. More generally, we demonstrate that iPSC technology can be used to observe phenotypes relevant to Alzheimer's disease, even though it can take decades for overt disease to manifest in patients
Evaluation of Osteoconductive Scaffolds in the Canine Femoral Multi-Defect Model
Treatment of large segmental bone defects remains an unsolved clinical challenge, despite a wide array of existing bone graft materials. This project was designed to rapidly assess and compare promising biodegradable osteoconductive scaffolds for use in the systematic development of new bone regeneration methodologies that combine scaffolds, sources of osteogenic cells, and bioactive scaffold modifications. Promising biomaterials and scaffold fabrication methods were identified in laboratories at Rutgers, MIT, Integra Life Sciences, and Mayo Clinic. Scaffolds were fabricated from various materials, including poly(L-lactide-co-glycolide) (PLGA), poly(L-lactide-co-Ι-caprolactone) (PLCL), tyrosine-derived polycarbonate (TyrPC), and poly(propylene fumarate) (PPF). Highly porous three-dimensional (3D) scaffolds were fabricated by 3D printing, laser stereolithography, or solvent casting followed by porogen leaching. The canine femoral multi-defect model was used to systematically compare scaffold performance and enable selection of the most promising substrate(s) on which to add cell sourcing options and bioactive surface modifications. Mineralized cancellous allograft (MCA) was used to provide a comparative reference to the current clinical standard for osteoconductive scaffolds. Percent bone volume within the defect was assessed 4 weeks after implantation using both MicroCT and limited histomorphometry. Bone formed at the periphery of all scaffolds with varying levels of radial ingrowth. MCA produced a rapid and advanced stage of bone formation and remodeling throughout the defect in 4 weeks, greatly exceeding the performance of all polymer scaffolds. Two scaffold constructs, TyrPC[subscript PL]/TCP and PPF4[subscript SLA]/HA[subscript PLGA Dip], proved to be significantly better than alternative PLGA and PLCL scaffolds, justifying further development. MCA remains the current standard for osteoconductive scaffolds.United States. Army Medical Research and Materiel Command (Armed Forces Institute of Regenerative Medicine)United States. Office of Naval ResearchUnited States. Air Force. Office of the Surgeon GeneralUnited States. NavyNational Institutes of Health (U.S.)United States. Veterans AdministrationCleveland Clinic Foundatio
TIEG1/KLF10 Modulates Runx2 Expression and Activity in Osteoblasts
Deletion of TIEG1/KLF10 in mice results in a gender specific osteopenic skeletal phenotype with significant defects in both cortical and trabecular bone, which are observed only in female animals. Calvarial osteoblasts isolated from TIEG1 knockout (KO) mice display reduced expression levels of multiple bone related genes, including Runx2, and exhibit significant delays in their mineralization rates relative to wildtype controls. These data suggest that TIEG1 plays an important role in regulating Runx2 expression in bone and that decreased Runx2 expression in TIEG1 KO mice is in part responsible for the observed osteopenic phenotype. In this manuscript, data is presented demonstrating that over-expression of TIEG1 results in increased expression of Runx2 while repression of TIEG1 results in suppression of Runx2. Transient transfection and chromatin immunoprecipitation assays reveal that TIEG1 directly binds to and activates the Runx2 promoter. The zinc finger containing domain of TIEG1 is necessary for this regulation supporting that activation occurs through direct DNA binding. A role for the ubiquitin/proteasome pathway in fine tuning the regulation of Runx2 expression by TIEG1 is also implicated in this study. Additionally, the regulation of Runx2 expression by cytokines such as TGFΞ²1 and BMP2 is shown to be inhibited in the absence of TIEG1. Co-immunoprecipitation and co-localization assays indicate that TIEG1 protein associates with Runx2 protein resulting in co-activation of Runx2 transcriptional activity. Lastly, Runx2 adenoviral infection of TIEG1 KO calvarial osteoblasts leads to increased expression of Runx2 and enhancement of their ability to differentiate and mineralize in culture. Taken together, these data implicate an important role for TIEG1 in regulating the expression and activity of Runx2 in osteoblasts and suggest that decreased expression of Runx2 in TIEG1 KO mice contributes to the observed osteopenic bone phenotype
Candidate Gene Analysis of Femoral Neck Trabecular and Cortical Volumetric Bone Mineral Density in Older Men
In contrast to conventional dual-energy X-ray absorptiometry, quantitative computed tomography separately measures trabecular and cortical volumetric bone mineral density (vBMD). Little is known about the genetic variants associated with trabecular and cortical vBMD in humans, although both may be important for determining bone strength and osteoporotic risk. In the current analysis, we tested the hypothesis that there are genetic variants associated with trabecular and cortical vBMD at the femoral neck by genotyping 4608 tagging and potentially functional single-nucleotide polymorphisms (SNPs) in 383 bone metabolism candidate genes in 822 Caucasian men aged 65 years or older from the Osteoporotic Fractures in Men Study (MrOS). Promising SNP associations then were tested for replication in an additional 1155 men from the same study. We identified SNPs in five genes (IFNAR2, NFATC1, SMAD1, HOXA, and KLF10) that were robustly associated with cortical vBMD and SNPs in nine genes (APC, ATF2, BMP3, BMP7, FGF18, FLT1, TGFB3, THRB, and RUNX1) that were robustly associated with trabecular vBMD. There was no overlap between genes associated with cortical vBMD and trabecular vBMD. These findings identify novel genetic variants for cortical and trabecular vBMD and raise the possibility that some genetic loci may be unique for each bone compartment. Β© 2010 American Society for Bone and Mineral Researc
In Vivo Gene Knockdown in Rat Dorsal Root Ganglia Mediated by Self-Complementary Adeno-Associated Virus Serotype 5 Following Intrathecal Delivery
We report here in adult rat viral vector mediate-gene knockdown in the primary sensory neurons and the associated cellular and behavior consequences. Self-complementary adeno-associated virus serotype 5 (AAV5) was constructed to express green fluorescent protein (GFP) and a small interfering RNA (siRNA) targeting mammalian target of rapamycin (mTOR). The AAV vectors were injected via an intrathecal catheter. We observed profound GFP expression in lumbar DRG neurons beginning at 2-week post-injection. Of those neurons, over 85% were large to medium-diameter and co-labeled with NF200, a marker for myelinated fibers. Western blotting of mTOR revealed an 80% reduction in the lumbar DRGs (L4βL6) of rats treated with the active siRNA vectors compared to the control siRNA vector. Gene knockdown became apparent as early as 7-day post-injection and lasted for at least 5 weeks. Importantly, mTOR knockdown occurred in large (NF200) and small-diameter neurons (nociceptors). The viral administration induced an increase of Iba1 immunoreactivity in the DRGs, which was likely attributed to the expression of GFP but not siRNA. Rats with mTOR knockdown in DRG neurons showed normal general behavior and unaltered responses to noxious stimuli. In conclusion, intrathecal AAV5 is a highly efficient vehicle to deliver siRNA and generate gene knockdown in DRG neurons. This will be valuable for both basic research and clinic intervention of diseases involving primary sensory neurons
HER-2 overexpression differentially alters transforming growth factor-Ξ² responses in luminal versus mesenchymal human breast cancer cells
INTRODUCTION: Amplification of the HER-2 receptor tyrosine kinase has been implicated in the pathogenesis and aggressive behavior of approximately 25% of invasive human breast cancers. Clinical and experimental evidence suggest that aberrant HER-2 signaling contributes to tumor initiation and disease progression. Transforming growth factor beta (TGF-Ξ²) is the dominant factor opposing growth stimulatory factors and early oncogene activation in many tissues, including the mammary gland. Thus, to better understand the mechanisms by which HER-2 overexpression promotes the early stages of breast cancer, we directly assayed the cellular and molecular effects of TGF-Ξ²1 on breast cancer cells in the presence or absence of overexpressed HER-2. METHODS: Cell proliferation assays were used to determine the effect of TGF-Ξ² on the growth of breast cancer cells with normal or high level expression of HER-2. Affymetrix microarrays combined with Northern and western blot analysis were used to monitor the transcriptional responses to exogenous TGF-Ξ²1 in luminal and mesenchymal-like breast cancer cells. The activity of the core TGF-Ξ² signaling pathway was assessed using TGF-Ξ²1 binding assays, phospho-specific Smad antibodies, immunofluorescent staining of Smad and Smad DNA binding assays. RESULTS: We demonstrate that cells engineered to over-express HER-2 are resistant to the anti-proliferative effect of TGF-Ξ²1. HER-2 overexpression profoundly diminishes the transcriptional responses induced by TGF-Ξ² in the luminal MCF-7 breast cancer cell line and prevents target gene induction by a novel mechanism that does not involve the abrogation of Smad nuclear accumulation, DNA binding or changes in c-myc repression. Conversely, HER-2 overexpression in the context of the mesenchymal MDA-MB-231 breast cell line potentiated the TGF-Ξ² induced pro-invasive and pro-metastatic gene signature. CONCLUSION: HER-2 overexpression promotes the growth and malignancy of mammary epithelial cells, in part, by conferring resistance to the growth inhibitory effects of TGF-Ξ². In contrast, HER-2 and TGF-Ξ² signaling pathways can cooperate to promote especially aggressive disease behavior in the context of a highly invasive breast tumor model
- β¦