49 research outputs found

    Impact of 13-Valent Pneumococcal Conjugate Vaccine on Colonization and Invasive Disease in Cambodian Children

    Get PDF
    Background Cambodia introduced the 13-valent pneumococcal conjugate vaccine (PCV13) in January 2015 using a 3 + 0 dosing schedule and no catch-up campaign. We investigated the effects of this introduction on pneumococcal colonization and invasive disease in children aged <5 years. Methods There were 6 colonization surveys done between January 2014 and January 2018 in children attending the outpatient department of a nongovernmental pediatric hospital in Siem Reap. Nasopharyngeal swabs were analyzed by phenotypic and genotypic methods to detect pneumococcal serotypes and antimicrobial resistance. Invasive pneumococcal disease (IPD) data for January 2012–December 2018 were retrieved from hospital databases. Pre-PCV IPD data and pre-/post-PCV colonization data were modelled to estimate vaccine effectiveness (VE). Results Comparing 2014 with 2016–2018, and using adjusted prevalence ratios, VE estimates for colonization were 16.6% (95% confidence interval [CI] 10.6–21.8) for all pneumococci and 39.2% (95% CI 26.7–46.1) for vaccine serotype (VT) pneumococci. There was a 26.0% (95% CI 17.7–33.0) decrease in multidrug-resistant pneumococcal colonization. The IPD incidence was estimated to have declined by 26.4% (95% CI 14.4–35.8) by 2018, with a decrease of 36.3% (95% CI 23.8–46.9) for VT IPD and an increase of 101.4% (95% CI 62.0–145.4) for non-VT IPD. Conclusions Following PCV13 introduction into the Cambodian immunization schedule, there have been declines in VT pneumococcal colonization and disease in children aged <5 years. Modelling of dominant serotype colonization data produced plausible VE estimates

    Randomised trial of proton vs. carbon ion radiation therapy in patients with low and intermediate grade chondrosarcoma of the skull base, clinical phase III study

    Get PDF
    <p/> <p>Background</p> <p>Low and intermediate grade chondrosarcomas are relative rare bone tumours. About 5-12% of all chondrosarcomas are localized in base of skull region. Low grade chondrosarcoma has a low incidence of distant metastasis but is potentially lethal disease. Therefore, local therapy is of crucial importance in the treatment of skull base chondrosarcomas. Surgical resection is the primary treatment standard. Unfortunately the late diagnosis and diagnosis at the extensive stage are common due to the slow and asymptomatic growth of the lesions. Consequently, complete resection is hindered due to close proximity to critical and hence dose limiting organs such as optic nerves, chiasm and brainstem. Adjuvant or additional radiation therapy is very important for the improvement of local control rates in the primary treatment. Proton therapy is the gold standard in the treatment of skull base chondrosarcomas. However, high-LET (linear energy transfer) beams such as carbon ions theoretically offer advantages by enhanced biologic effectiveness in slow-growing tumours.</p> <p>Methods/Design</p> <p>The study is a prospective randomised active-controlled clinical phase III trial. The trial will be carried out at Heidelberger Ionenstrahl-Therapie (HIT) centre as monocentric trial.</p> <p>Patients with skull base chondrosarcomas will be randomised to either proton or carbon ion radiation therapy. As a standard, patients will undergo non-invasive, rigid immobilization and target volume definition will be carried out based on CT and MRI data. The biologically isoeffective target dose to the PTV (planning target volume) in carbon ion treatment will be 60 Gy E ± 5% and 70 Gy E ± 5% (standard dose) in proton therapy respectively. The 5 year local-progression free survival (LPFS) rate will be analysed as primary end point. Overall survival, progression free and metastasis free survival, patterns of recurrence, local control rate and morbidity are the secondary end points.</p> <p>Discussion</p> <p>Up to now it was impossible to compare two different particle therapies, i.e. protons and carbon ions, directly at the same facility in connection with the treatment of low grade skull base chondrosarcomas.</p> <p>This trial is a phase III study to demonstrate that carbon ion radiotherapy (experimental treatment) is not relevantly inferior and at least as good as proton radiotherapy (standard treatment) with respect to 5 year LPFS in the treatment of chondrosarcomas. Additionally, we expect less toxicity in the carbon ion treatment arm.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov identifier: NCT01182753</p

    Combination antibiotic therapy for community-acquired pneumonia

    Get PDF
    Community-acquired pneumonia (CAP) is a common and potentially serious illness that is associated with morbidity and mortality. Although medical care has improved during the past decades, it is still potentially lethal. Streptococcus pneumoniae is the most frequent microorganism isolated. Treatment includes mandatory antibiotic therapy and organ support as needed. There are several antibiotic therapy regimens that include β-lactams or macrolides or fluoroquinolones alone or in combination. Combination antibiotic therapy achieves a better outcome compared with monotherapy and it should be given in the following subset of patients with CAP: outpatients with comorbidities and previous antibiotic therapy, nursing home patients with CAP, hospitalized patients with severe CAP, bacteremic pneumococcal CAP, presence of shock, and necessity of mechanical ventilation. Better outcome is associated with combination therapy that includes a macrolide for wide coverage of atypical pneumonia, polymicrobial pneumonia, or resistant Streptococcus pneumoniae. Macrolides have shown different properties other than antimicrobial activity, such as anti-inflammatory properties. Although this evidence comes from observational, most of them retrospective and nonblinded studies, the findings are consistent. Ideally, a prospective, multicenter, randomized trial should be performed to confirm these findings
    corecore