176 research outputs found

    De novo biosynthesis of simple aromatic compounds by an arthropod (Archegozetes longisetosus)

    Get PDF
    The ability to synthesize simple aromatic compounds is well known from bacteria, fungi and plants, which all share an exclusive biosynthetic route—the shikimic acid pathway. Some of these organisms further evolved the polyketide pathway to form core benzenoids via a head-to-tail condensation of polyketide precursors. Arthropods supposedly lack the ability to synthesize aromatics and instead rely on aromatic amino acids acquired from food, or from symbiotic microorganisms. The few studies purportedly showing de novo biosynthesis via the polyketide synthase (PKS) pathway failed to exclude endosymbiotic bacteria, so their results are inconclusive. We investigated the biosynthesis of aromatic compounds in defence secretions of the oribatid mite Archegozetes longisetosus. Exposing the mites to a diet containing high concentrations of antibiotics removed potential microbial partners but did not affect the production of defensive benzenoids. To gain insights into benzenoid biosynthesis, we fed mites with stable-isotope labelled precursors and monitored incorporation with mass spectrometry. Glucose, malonic acid and acetate, but not phenylalanine, were incorporated into the benzenoids, further evidencing autogenous biosynthesis. Whole-transcriptome sequencing with hidden Markov model profile search of protein domain families and subsequent phylogenetic analysis revealed a putative PKS domain similar to an actinobacterial PKS, possibly indicating a horizontal gene transfer

    Temperature Affects Chemical Defense in a Mite-Beetle Predator-Prey System

    Get PDF
    Temperature influences all biochemical and biophysiological processes within an organism. By extension, it also affects those ecological interactions that are mediated by gland-produced chemical compounds, such as reservoir-based chemical defense. Herein, we investigate how environmental temperature affects the regeneration of defensive secretions and influences the efficacy of chemical defense in a model predator-prey system: the oribatid mite Archegozetes longisetosus and the predaceous rove beetle Stenus juno. Through a combination of chemical analyses, non-linear regression modeling and theoretical simulations we show that the amount of defensive secretion responded to temperature in a unimodal optimum curve: the regeneration rate followed a positive, linear relationship up to 35 °C, but rapidly broke down beyond this temperature (“tipping point” effect). Using functional response simulations, there is an initially positive dampening effect on the predation rate when regeneration is optimal, but at higher temperatures chemical defense does not counteract the previously described effects of elevated predatory pressure. In a larger context, our results demonstrate the need to integrate relevant environmental factors in predator-prey modeling approaches

    Temperature Affects Chemical Defense in a Mite-Beetle Predator-Prey System

    Get PDF
    Temperature influences all biochemical and biophysiological processes within an organism. By extension, it also affects those ecological interactions that are mediated by gland-produced chemical compounds, such as reservoir-based chemical defense. Herein, we investigate how environmental temperature affects the regeneration of defensive secretions and influences the efficacy of chemical defense in a model predator-prey system: the oribatid mite Archegozetes longisetosus and the predaceous rove beetle Stenus juno. Through a combination of chemical analyses, non-linear regression modeling and theoretical simulations we show that the amount of defensive secretion responded to temperature in a unimodal optimum curve: the regeneration rate followed a positive, linear relationship up to 35 °C, but rapidly broke down beyond this temperature (“tipping point” effect). Using functional response simulations, there is an initially positive dampening effect on the predation rate when regeneration is optimal, but at higher temperatures chemical defense does not counteract the previously described effects of elevated predatory pressure. In a larger context, our results demonstrate the need to integrate relevant environmental factors in predator-prey modeling approaches

    An automated device for the digitization and 3D modelling of insects, combining extended-depth-of-field and all-side multi-view imaging

    Get PDF
    Digitization of natural history collections is a major challenge in archiving biodiversity. In recent years, several approaches have emerged, allowing either automated digitization, extended depth of field (EDOF) or multi-view imaging of insects. Here, we present DISC3D: a new digitization device for pinned insects and other small objects that combines all these aspects. A PC and a microcontroller board control the device. It features a sample holder on a motorized two-axis gimbal, allowing the specimens to be imaged from virtually any view. Ambient, mostly reflection-free illumination is ascertained by two LED-stripes circularly installed in two hemispherical white-coated domes (front-light and back-light). The device is equipped with an industrial camera and a compact macro lens, mounted on a motorized macro rail. EDOF images are calculated from an image stack using a novel calibrated scaling algorithm that meets the requirements of the pinhole camera model (a unique central perspective). The images can be used to generate a calibrated and real color texturized 3Dmodel by ‘structure from motion’ with a visibility consistent mesh generation. Such models are ideal for obtaining morphometric measurement data in 1D, 2D and 3D, thereby opening new opportunities for trait-based research in taxonomy, phylogeny, eco-physiology, and functional ecology

    De novo biosynthesis of simple aromatic compounds by an arthropod (Archegozetes longisetosus)

    Get PDF
    The ability to synthesize simple aromatic compounds is well known from bacteria, fungi and plants, which all share an exclusive biosynthetic route—the shikimic acid pathway. Some of these organisms further evolved the polyketide pathway to form core benzenoids via a head-to-tail condensation of polyketide precursors. Arthropods supposedly lack the ability to synthesize aromatics and instead rely on aromatic amino acids acquired from food, or from symbiotic microorganisms. The few studies purportedly showing de novo biosynthesis via the polyketide synthase (PKS) pathway failed to exclude endosymbiotic bacteria, so their results are inconclusive. We investigated the biosynthesis of aromatic compounds in defence secretions of the oribatid mite Archegozetes longisetosus. Exposing the mites to a diet containing high concentrations of antibiotics removed potential microbial partners but did not affect the production of defensive benzenoids. To gain insights into benzenoid biosynthesis, we fed mites with stable-isotope labelled precursors and monitored incorporation with mass spectrometry. Glucose, malonic acid and acetate, but not phenylalanine, were incorporated into the benzenoids, further evidencing autogenous biosynthesis. Whole-transcriptome sequencing with hidden Markov model profile search of protein domain families and subsequent phylogenetic analysis revealed a putative PKS domain similar to an actinobacterial PKS, possibly indicating a horizontal gene transfer
    • 

    corecore