987 research outputs found

    Test of the gravitational redshift with stable clocks in eccentric orbits: application to Galileo satellites 5 and 6

    Full text link
    The Einstein Equivalence Principle (EEP) is one of the foundations of the theory of General Relativity and several alternative theories of gravitation predict violations of the EEP. Experimental constraints on this fundamental principle of nature are therefore of paramount importance. The EEP can be split in three sub-principles: the Universality of Free Fall (UFF), the Local Lorentz Invariance (LLI) and the Local Position Invariance (LPI). In this paper we propose to use stable clocks in eccentric orbits to perform a test of the gravitational redshift, a consequence of the LPI. The best test to date was performed with the Gravity Probe A (GP-A) experiment in 1976 with an uncertainty of 1.4×10−41.4\times10^{-4}. Our proposal considers the opportunity of using Galileo satellites 5 and 6 to improve on the GP-A test uncertainty. We show that considering realistic noise and systematic effects, and thanks to a highly eccentric orbit, it is possible to improve on the GP-A limit to an uncertainty around (3−4)×10−5(3-4)\times 10^{-5} after one year of integration of Galileo 5 and 6 data.Comment: 13 pages, 5 figures, accepted in Classical and Quantum Gravity as a Fast Track Communicatio

    How to test SME with space missions ?

    Full text link
    In this communication, we focus on possibilities to constrain SME coefficients using Cassini and Messenger data. We present simulations of radioscience observables within the framework of the SME, identify the linear combinations of SME coefficients the observations depend on and determine the sensitivity of these measurements to the SME coefficients. We show that these datasets are very powerful for constraining SME coefficients.Comment: Presented at the Sixth Meeting on CPT and Lorentz Symmetry, Bloomington, Indiana, June 17-21, 2013. 4 pages, 1 figur

    Interpretation of Recent SPS Dilepton Data

    Get PDF
    We summarize our current theoretical understanding of in-medium properties of the electromagnetic current correlator in view of recent dimuon data from the NA60 experiment in In(158 AGeV)-In collisions at the CERN-SPS. We discuss the sensitivity of the results to space-time evolution models for the hot and dense partonic and hadronic medium created in relativistic heavy-ion collisions and the contributions from different sources to the dilepton-excess spectra.Comment: To appear in the proceedings of the 19th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions (Quark Matter 2006) v2: references added, minor typos correcte

    Violation of the equivalence principle from light scalar fields: from Dark Matter candidates to scalarized black holes

    Full text link
    Tensor-scalar theory is a wide class of alternative theory of gravitation that can be motivated by higher dimensional theories, by models of dark matter or dark ernergy. In the general case, the scalar field will couple non-universally to matter producing a violation of the equivalence principle. In this communication, we review a microscopic model of scalar/matter coupling and its observable consequences in terms of universality of free fall, of frequencies comparison and of redshifts tests. We then focus on two models: (i) a model of ultralight scalar dark matter and (ii) a model of scalarized black hole in our Galactic Center. For both these models, we present constraints using recent measurements: atomic clocks comparisons, universality of free fall measurements, measurement of the relativistic redshift with the short period star S0-2 orbiting the supermassive black hole in our Galactic Center.Comment: 8 pages, 1 figure, contribution to the 2019 Gravitation session of the 54th Rencontres de Morion

    Physical Activity and Adiposity Markers at Older Ages: Accelerometer Vs Questionnaire Data

    Get PDF
    Physical activity is critically important for successful aging, but its effect on adiposity markers at older ages is unclear as much of the evidence comes from self-reported data on physical activity. We assessed the associations of questionnaire-assessed and accelerometer-assessed physical activity with adiposity markers in older adults

    Heavy-Quark Diffusion, Flow and Recombination at RHIC

    Full text link
    We discuss recent developments in assessing heavy-quark interaction in the Quark-Gluon Plasma (QGP). While induced gluon radiation is expected to be the main energy-loss mechanism for fast-moving quarks, we focus on elastic scattering which prevails toward lower energies, evaluating both perturbative (gluon-exchange) and nonperturbative (resonance formation) interactions in the QGP. The latter are treated within an effective model for D- and B-meson resonances above T_c as motivated by current QCD lattice calculations. Pertinent diffusion and drag constants, following from a Fokker-Planck equation, are implemented into an expanding fireball model for Au-Au collisions at RHIC using relativistic Langevin simulations. Heavy quarks are hadronized in a combined fragmentation and coalescence framework, and resulting electron-decay spectra are compared to recent RHIC data. A reasonable description of both nuclear suppression factors and elliptic flow up to momenta of ~5 GeV supports the notion of a strongly interacting QGP created at RHIC. Consequences and further tests of the proposed resonance interactions are discussed.Comment: 8 pages, 14 figures, contribution to the proceedings for the "International Conference on Strangeness in Quark Matter 2006

    Quantum state of a free spin-1/2 particle and the inextricable dependence of spin and momentum under Lorentz transformations

    Full text link
    We revise the Dirac equation for a free particle and investigate Lorentz transformations on spinors. We study how the spin quantization axis changes under Lorentz transformations, and evince the interplay between spin and momentum in this context.Comment: 14 pages, 3 figures, published as a Review in the IJQ

    Testing Gravitation in the Solar System with Radio Science experiments

    Full text link
    The laws of gravitation have been tested for a long time with steadily improving precision, leading at some moment of time to paradigmatic evolutions. Pursuing this continual effort is of great importance for science. In this communication, we focus on Solar System tests of gravity and more precisely on possible tests that can be performed with radio science observations (Range and Doppler). After briefly reviewing the current tests of gravitation at Solar System scales, we give motivations to continue such experiments. In order to obtain signature and estimate the amplitude of anomalous signals that could show up in radio science observables because of modified gravitational laws, we developed a new software that simulates Range/Doppler signals. We present this new tool that simulates radio science observables directly from the space-time metric. We apply this tool to the Cassini mission during its cruise from Jupiter to Saturn and derive constraints on the parameters entering alternative theories of gravity beyond the standard Parametrized Post Newtonian theory.Comment: proceedings of SF2A 2011 - minor changes (typos corrected - references updated
    • 

    corecore