796 research outputs found

    Variation in performance of beech saplings of 7 European provenances under shade and full light conditions

    Get PDF
    The use of beech seedlings from South-East European and North-West (NW) provenances for underplanting in coniferous forests in North-West Europe was investigated by means of experimental shading. The effects of this treatment on survival, morphology, phenology, physiology and growth were analysed by applying an individual plant growth model integrating these aspects. It was concluded that plant performance under full-light conditions are representative of shaded conditions, so good performing provenances can be selected in a field situation. It was further concluded that good performing South-East European seedlings can be used in North-West European conditions. The modelling results indicated an interesting trade-off between height growth and biomass increase and different provenances show different strategies. This allows selection of suitable provenances for specific situations, e.g. when beech seedlings need to compete with other plant species in the understorey

    Chiral symmetry restoration in linear sigma models with different numbers of quark flavors

    Full text link
    Chiral symmetry restoration at nonzero temperature is studied in the framework of the O(4) linear sigma model and the U(N_f)_r x U(N_f)_l linear sigma model with N_f=2,3, and 4 quark flavors. We investigate the temperature dependence of the masses of the scalar and pseudoscalar mesons, and the non-strange, strange, and charm condensates within the Hartree approximation as derived from the Cornwall-Jackiw-Tomboulis formalism. We find that the masses of the non-strange and strange mesons at nonzero temperature depend sensitively on the particular symmetry of the model and the number of light quark flavors N_f. On the other hand, due to the large charm quark mass, neither do charmed mesons significantly affect the properties of the other mesons, nor do their masses change appreciably in the temperature range around the chiral symmetry restoration temperature. In the chiral limit, the transition temperatures for chiral symmetry restoration are surprisingly close to those found in lattice QCD.Comment: 28 pages, 8 figure

    Microscopic description of light unstable nuclei with the stochastic variational method

    Get PDF
    The structure of the light proton and neutron rich nuclei is studied in a microscopic multicluster model using the stochastic variational method. This approach enables us to describe the weakly bound nature of these nuclei in a consistent way. Applications for various nuclei 69^{6-9}Li, 7^7Be, 8^8B, 9^9C, 910^{9-10}Be, 910^{9-10}B presented. The paper discusses the relation of this model to other models as well as the possible extension for p and sd shell nuclei.Comment: 11 pages, latex, no figures

    Quantum state of a free spin-1/2 particle and the inextricable dependence of spin and momentum under Lorentz transformations

    Full text link
    We revise the Dirac equation for a free particle and investigate Lorentz transformations on spinors. We study how the spin quantization axis changes under Lorentz transformations, and evince the interplay between spin and momentum in this context.Comment: 14 pages, 3 figures, published as a Review in the IJQ

    A T-Matrix Calculation for in-Medium Heavy-Quark Gluon Scattering

    Full text link
    The interactions of charm and bottom quarks in a Quark-Gluon Plasma (QGP) are evaluated using a thermodynamic 2-body T-matrix. We specifically focus on heavy-quark (HQ) interactions with thermal gluons with an input potential motivated by lattice-QCD computations of the HQ free energy. The latter is implemented into a field-theoretic ansatz for color-Coulomb and (remnants of) confining interactions. This, in particular, enables to discuss corrections to the potential approach, specifically hard-thermal-loop corrections to the vertices, relativistic corrections deduced from pertinent Feynman diagrams, and a suitable projection on transverse thermal gluons. The resulting potentials are applied to compute scattering amplitudes in different color channels and utilized for a calculation of the corresponding HQ drag coefficient in the QGP. A factor of ~2-3 enhancement over perturbative results is obtained, mainly driven by the resummation in the attractive color-channels

    Improving Orbit Estimates for Incomplete Orbits with a New Approach to Priors -- with Applications from Black Holes to Planets

    Get PDF
    We propose a new approach to Bayesian prior probability distributions (priors) that can improve orbital solutions for low-phase-coverage orbits, where data cover less than approximately 40% of an orbit. In instances of low phase coverage such as with stellar orbits in the Galactic center or with directly-imaged exoplanets, data have low constraining power and thus priors can bias parameter estimates and produce under-estimated confidence intervals. Uniform priors, which are commonly assumed in orbit fitting, are notorious for this. We propose a new observable-based prior paradigm that is based on uniformity in observables. We compare performance of this observable-based prior and of commonly assumed uniform priors using Galactic center and directly-imaged exoplanet (HR 8799) data. The observable-based prior can reduce biases in model parameters by a factor of two and helps avoid under-estimation of confidence intervals for simulations with less than about 40% phase coverage. Above this threshold, orbital solutions for objects with sufficient phase coverage such as S0-2, a short-period star at the Galactic center with full phase coverage, are consistent with previously published results. Below this threshold, the observable-based prior limits prior influence in regions of prior dominance and increases data influence. Using the observable-based prior, HR 8799 orbital analyses favor lower eccentricity orbits and provide stronger evidence that the four planets have a consistent inclination around 30 degrees to within 1-sigma. This analysis also allows for the possibility of coplanarity. We present metrics to quantify improvements in orbital estimates with different priors so that observable-based prior frameworks can be tested and implemented for other low-phase-coverage orbits.Comment: Published in AJ. 23 pages, 14 figures. Monte Carlo chains are available in the published article, or are available upon reques

    Nonequilibrium evolution of Phi**4 theory in 1+1 dimensions in the 2PPI formalism

    Get PDF
    We consider the out-of-equilibrium evolution of a classical condensate field and its quantum fluctuations for a Phi**4 model in 1+1 dimensions with a symmetric and a double well potential. We use the 2PPI formalism and go beyond the Hartree approximation by including the sunset term. In addition to the mean field phi= the 2PPI formalism uses as variational parameter a time dependent mass M**2(t) which contains all local insertions into the Green function. We compare our results to those obtained in the Hartree approximation. In the symmetric Phi**4 theory we observe that the mean field shows a stronger dissipation than the one found in the Hartree approximation. The dissipation is roughly exponential in an intermediate time region. In the theory with spontaneous symmetry breaking, i.e., with a double well potential, the field amplitude tends to zero, i.e., to the symmetric configuration. This is expected on general grounds: in 1+1 dimensional quantum field theory there is no spontaneous symmetry breaking for T >0, and so there should be none at finite energy density (microcanonical ensemble), either. Within the time range of our simulations the momentum spectra do not thermalize and display parametric resonance bands.Comment: 14 pages, 18 encapsulated postscript figures; v2 minor changes, new appendix, accepted for publication in Phys.Rev.

    Pion damping width from SU(2) x SU(2) NJL model

    Full text link
    Within the framework of the NJL model, we investigate the modification of the pion damping width in a hot pion gas for temperatures ranging from 0 to 180 MeV. The pion is found to broaden noticeably at T > 60 MeV. Near the chiral phase transition T ~ 180 MeV, the pion width is saturated and amounts to 70 MeV. The main contribution to the width comes from pion-pion collisions. Other contributions are found negligibly small.Comment: LaTeX2e, 13 pages, 2 figure

    Hard gluon damping in hot QCD

    Full text link
    The gluon collisional width in hot QCD plasmas is discussed with emphasis on temperatures near TcT_c, where the coupling is large. Considering its effect on the entropy, which is known from lattice calculations, it is argued that the width, which in the perturbative limit is given by γg2ln(1/g)T\gamma \sim g^2 \ln(1/g) T, should be sizeable at intermediate temperatures but has to be small close to TcT_c. Implications of these results for several phenomenologically relevant quantities, such as the energy loss of hard jets, are pointed out.Comment: uses RevTex and graphic

    Low mass dilepton radiation at RHIC

    Full text link
    In this work we discuss the emission of low mass dilepton radiation from a hydrodynamic evolution model of Au-Au collisions and make comparisons with recent PHENIX measurements. The dilepton emission rates from the hadronic phase are treated at finite temperature and baryon density and are completely constrained by broken chiral symmetry in a density expansion. The rates are expressed in terms of vacuum correlators which are measured in e+ee^+e^- annihilation, τ\tau decays and photo-reactions on nucleons and nuclei. We consider two possibilities for the hadronic phase: A chemical equilibrated an off equilibrium hadronic gas. We find that while chemical off-equilibrium helps explain part of the low mass (0.15 \leq M GeV \leq 0.7) enhancement seen in the data there is still a large discrepancy.Comment: 8 pages, 12 figure
    corecore