48 research outputs found

    A pulsed source of continuous variable polarization entanglement

    Full text link
    We have experimentally demonstrated polarization entanglement using continuous variables in an ultra-short pulsed laser system at telecommunication wavelengths. Exploiting the Kerr-nonlinearity of a glass fibre we generated a polarization squeezed pulse with S2 the only non-zero Stokes parameter thus S1 and S3 being the conjugate pair. Polarization entanglement was generated by interference of the polarization squeezed field with a vacuum on a 50:50 beam splitter. The two resultant beams exhibit strong quantum noise correlations in S1 and S3. The sum noise signal of S3 was at the respective shot noise level and the difference noise signal of S1 fell 2.9dB below this value

    Assessing the Polarization of a Quantum Field from Stokes Fluctuation

    Get PDF
    We propose an operational degree of polarization in terms of the variance of the projected Stokes vector minimized over all the directions of the Poincar\'e sphere. We examine the properties of this degree and show that some problems associated with the standard definition are avoided. The new degree of polarization is experimentally determined using two examples: a bright squeezed state and a quadrature squeezed vacuum.Comment: 4 pages, 2 figures. Comments welcome

    Quantum reconstruction of an intense polarization squeezed optical state

    Get PDF
    We perform a reconstruction of the polarization sector of the density matrix of an intense polarization squeezed beam starting from a complete set of Stokes measurements. By using an appropriate quasidistribution, we map this onto the Poincare space providing a full quantum mechanical characterization of the measured polarization state.Comment: 4 pages, 4 eps color figure

    Entanglement and squeezing in a two-mode system: theory and experiment

    Full text link
    We report on the generation of non separable beams produced via the interaction of a linearly polarized beam with a cloud of cold cesium atoms placed in an optical cavity. We convert the squeezing of the two linear polarization modes into quadrature entanglement and show how to find out the best entanglement generated in a two-mode system using the inseparability criterion for continuous variable [Duan et al., Phys. Rev. Lett. 84, 2722 (2000)]. We verify this method experimentally with a direct measurement of the inseparability using two homodyne detections. We then map this entanglement into a polarization basis and achieve polarization entanglement.Comment: submitted to J. Opt. B for a Special Issue on Foundations of Quantum Optic

    Simulations and Experiments on Polarisation Squeezing in Optical Fibre

    Get PDF
    We investigate polarisation squeezing of ultrashort pulses in optical fibre, over a wide range of input energies and fibre lengths. Comparisons are made between experimental data and quantum dynamical simulations, to find good quantitative agreement. The numerical calculations, performed using both truncated Wigner and exact +P+P phase-space methods, include nonlinear and stochastic Raman effects, through coupling to phonons variables. The simulations reveal that excess phase noise, such as from depolarising GAWBS, affects squeezing at low input energies, while Raman effects cause a marked deterioration of squeezing at higher energies and longer fibre lengths. The optimum fibre length for maximum squeezing is also calculated.Comment: 19 pages, lots of figure

    Polarization squeezing of intense pulses with a fiber Sagnac interferometer

    Full text link
    We report on the generation of polarization squeezing of intense, short light pulses using an asymmetric fiber Sagnac interferometer. The Kerr nonlinearity of the fiber is exploited to produce independent amplitude squeezed pulses. The polarization squeezing properties of spatially overlapped amplitude squeezed and coherent states are discussed. The experimental results for a single amplitude squeezed beam are compared to the case of two phase-matched, spatially overlapped amplitude squeezed pulses. For the latter, noise variances of -3.4dB below shot noise in the S0 and the S1 and of -2.8dB in the S2 Stokes parameters were observed, which is comparable to the input squeezing magnitude. Polarization squeezing, that is squeezing relative to a corresponding polarization minimum uncertainty state, was generated in S1.Comment: v4: 2 small typos corrected v3: misc problems with Tex surmounted - mysteriously missing text returned to results - vol# for Korolkova et al. PRA v2: was a spelling change in author lis

    Experimental entanglement distillation of mesoscopic quantum states

    Full text link
    The distribution of entangled states between distant parties in an optical network is crucial for the successful implementation of various quantum communication protocols such as quantum cryptography, teleportation and dense coding [1-3]. However, owing to the unavoidable loss in any real optical channel, the distribution of loss-intolerant entangled states is inevitably inflicted by decoherence, which causes a degradation of the transmitted entanglement. To combat the decoherence, entanglement distillation, which is the process of extracting a small set of highly entangled states from a large set of less entangled states, can be used [4-14]. Here we report on the mesoscopic distillation of deterministically prepared entangled light pulses that have undergone non-Gaussian noise. The entangled light pulses [15-17] are sent through a lossy channel, where the transmission is varying in time similarly to light propagation in the atmosphere. By employing linear optical components and global classical communication, the entanglement is probabilistically increased.Comment: 13 pages, 4 figures. It's the first submitted version to the Nature Physics. The final version is already published on Nature Physics vol.4, No.12, 919 - 923 (2008

    All-fibre source of amplitude-squeezed light pulses

    Full text link
    An all-fibre source of amplitude squeezed solitons utilizing the self-phase modulation in an asymmetric Sagnac interferometer is experimentally demonstrated. The asymmetry of the interferometer is passively controlled by an integrated fibre coupler, allowing for the optimisation of the noise reduction. We have carefully studied the dependence of the amplitude noise on the asymmetry and the power launched into the Sagnac interferometer. Qualitatively, we find good agreement between the experimental results, a semi-classical theory and earlier numerical calculations [Schmitt etl.al., PRL Vol. 81, p.2446, (1998)]. The stability and flexibility of this all-fibre source makes it particularly well suited to applications in quantum information science

    Atmospheric Channel Characteristics for Quantum Communication with Continuous Polarization Variables

    Full text link
    We investigate the properties of an atmospheric channel for free space quantum communication with continuous polarization variables. In our prepare-and-measure setup, coherent polarization states are transmitted through an atmospheric quantum channel of 100m length on the roof of our institute's building. The signal states are measured by homodyne detection with the help of a local oscillator (LO) which propagates in the same spatial mode as the signal, orthogonally polarized to it. Thus the interference of signal and LO is excellent and atmospheric fluctuations are autocompensated. The LO also acts as spatial and spectral filter, which allows for unrestrained daylight operation. Important characteristics for our system are atmospheric channel influences that could cause polarization, intensity and position excess noise. Therefore we study these influences in detail. Our results indicate that the channel is suitable for our quantum communication system in most weather conditions.Comment: 6 pages, 4 figures, submitted to Applied Physics B following an invitation for the special issue "Selected Papers Presented at the 2009 Spring Meeting of the Quantum Optics and Photonics Section of the German Physical Society

    Quantum many-body simulations using Gaussian phase-space representations

    Get PDF
    Phase-space representations are of increasing importance as a viable and successful means to study exponentially complex quantum many-body systems from first principles. This review traces the background of these methods, starting from the early work of Wigner, Glauber and Sudarshan. We focus on modern phase-space approaches using non-classical phase-space representations. These lead to the Gaussian representation, which unifies bosonic and fermionic phase-space. Examples treated include quantum solitons in optical fibers, colliding Bose-Einstein condensates, and strongly correlated fermions on lattices.Comment: Short Review (10 pages); Corrected typo in eq (14); Added a few more reference
    corecore