254 research outputs found

    Convection pattern morphology and variations (invited review)

    Get PDF
    A fairly straightforward consideration of the interaction between a southward interplanetary magnetic field and the Earth's magnetic field will result in the prediction of a two cell convection pattern in the high latitude ionosphere. This is shown schematically where the antisunward flow at high latitudes results from the application of the solar wind electric field to the ionosphere and the return sunward flow results from an electric field generated in the plasma sheet to ensure continuity. This convection pattern can be quite easily characterized in terms of the radius of the approximately circular region containing the antisunward flow, called the polar cap and the maximum potential difference applied across this region. The convection pattern described is at least understandable in terms of solar wind/magnetosphere interaction in which open field lines are recirculated in the polar cap and a viscous interaction process exists near the flanks of the magnetosphere's equatorial plane giving rise to the lower latitude convection cells

    Ionospheric dynamics instrument investigation for the Timed Mission

    Get PDF
    The primary science objectives for the Ionospheric Dynamics Instrument (IDI) investigation are related to the global response of the ITM to energy inputs from the magnetosphere and an understanding of the ways in which electric fields are internally generated by neutral atmosphere motions in the lower thermosphere and mesosphere. At low and mid latitudes the electric fields are generated by neutral atmosphere motions and temporal resolution on time scales of a second will adequately describe the global field and allow its relationship to neutral wind motion to be established. However, the redistribution of current systems and the electrodynamics associated with plasma structures requires temporal sampling rates at the highest possible frequencies. The results of these studies are presented graphically

    Rocket/Radar Investigation of Lower Ionospheric Electrodynamics Associated with Intense Midlatitude Sporadic-E Layers

    Get PDF
    Sporadic layers, which appear in the region from 100 km to 120 km are thought to be formed by convergent Pedersen drifts induced by altitude gradients in the zonal neutral wind. In this altitude region NO+ and 02+ are the major ions produced by photoionization and charge exchange of atmospheric and ionospheric species. The relative composition of atmospheric ions and meteoric ions in sporadic layers is important in determining their persistence, the time scales for formation, and the electrical conductivity of the layers. This rocket investigation will include a diagnosis of the neutral wind field and the electric field distribution. Coupled with ion composition measurements we will be able to expose the relevant formation mechanisms and the electrodynamic consequences of their existence. A rocket trajectory has been chosen to provide substantial horizontal sampling of the layer properties and knowledge of the horizontal gradients in composition and density are essential to determine the polarization electric fields that may be associated with ionospheric layers. The University of Texas at Dallas (UTD) is responsible for designing, building, and operating the ion mass spectrometers included on these rockets. The following provides a summary of the UTD accomplishments in the second year of the project as well as a description of the plans for the third year's activities. The UTD mass spectrometer acronym has been coined as PRIMS for Puerto Rico Ion Mass Spectrometer

    Ion Drift Meter for Dynamics Explorer

    Get PDF
    The ion drift meter for Dynamics Explorer B is discussed. It measures two mutually perpendicular angles of arrival of thermal ions with respect to the sensor look directions. These angles lie in the vertical and horizontal planes and may be thought of as pitch and yaw in the conventional aerodynamic sense. The components of the ion drift velocity along vertical and horizontal axes through the spacecraft body are derived to first order from knowledge of the spacecraft velocity vector and more accurately with additional knowledge of the component of ion drift along the sensor look direction

    Adaptive Identification and Characterization of Polar Ionization Patches

    Get PDF
    Dynamics Explorer 2 (DE 2) spacecraft data are used to detect and characterize polar cap 'ionization patches' loosely defined as large-scale (greater than 100 km) regions where the F region plasma density is significantly enhanced (approx greater than 100%) above the background level. These patches are generally believed to develop in or equatorward of the dayside cusp region and then drift in an antisunward direction over the polar cap. We have developed a flexible algorithm for the identification and characterization of these structures, as a function of scale-size and density enhancement, using data from the retarding potential analyzer, the ion drift meter, and the langmuir probe on board the DE 2 satellite. This algorithm was used to study the structure and evolution of ionization patches as they cross the polar cap. The results indicate that in the altitude region from 240 to 950 km ion density enhancements greater than a factor of 3 above the background level are relatively rare. Further, the ionization patches show a preferred horizontal scale size of 300-400 km. There exists a clear seasonal and universal time dependence to the occurrence frequency of patches with a northern hemisphere maximum centered on the winter solstice and the 1200-2000 UT interval

    Structures in Ionospheric Number Density and Velocity Associated with Polar Cap Ionization Patches

    Get PDF
    Spectral characteristics of polar cap F region irregularities on large density gradients associated with polar ionization patches are studied using in situ measurements made by the Dynamics Explorer 2 (DE 2) spacecraft. The 18 patches studied in this paper were identified by the algorithm introduced by Coley and Heelis, and they were encountered during midnight-noon passes of the spacecraft. Density and velocity spectra associated with these antisunward convecting patches are analyzed in detail. Observations indicate the presence of structure on most patches regardless of the distance between the patch and the cusp where they are believed to develop. Existence of structure on both leading and trailing edges is established when such edges exist. Results, which show no large dependence of Delta N/N power on the sign of the edge gradient del N, do not allow the identification of leading and trailing edges of the patch. The Delta N/N is an increasing function of gradient del N regardless of the sign of the gradient. The correlation between Delta N/N and Delta V is generally poor, but for a given intensity in Delta V, Delta N/N maximizes in regions of large gradients in N. There is evidence for the presence of unstructured patches that seem to co-exist with unstructured horizontal velocities. Slightly smaller spectral indices for trailing edges support the presence of the E X B drift instability. Although this instability is found to be operating in some cases, results suggest that stirring may be a significant contributor to kilometer-size structures in the polar cap

    Equatorial Density Irregularity Structures at Intermediate Scales and Their Temporal Evolution

    Get PDF
    We examine high resolution measurements of ion density in the equatorial ionosphere from the AE-E satellite during the years 1977-1981. Structure over spatial scales from 18 km to 200 m is characterized by the spectrum of irregularities at larger and smaller scales and at altitudes above 350 km and below 300 km. In the low-altitude region, only small amplitude large-scale (lambda greater than 5 km) density modulations are often observed, and thus the power spectrum of these density structures exhibits a steep spectral slope at kilometer scales. In the high-altitude region, sinusoidal density fluctuations, characterized by enhanced power near 1-km scale, are frequently observed during 2000-0200 LT. However, such fluctuations are confined to regions at the edges of larger bubble structures where the average background density is high. Small amplitude irregularity structures, observed at early local time hours, grow rapidly to high-intensity structures in about 90 min. Fully developed structures, which are observed at late local time hours, decay very slowly producing only-small differences in spectral characteristics even 4 hours later. The local time evolution of irregularity structure is investigated by using average statistics for low-(1% less than sigma less than 5%) and high-intensity (sigma greater than 10%) structures. At lower altitudes, little chance in the spectral slope is seen as a function of local time, while at higher attitudes the growth and maintenance of structures near 1 km scales dramatically affects the spectral slope

    The relationships between high latitude convection reversals and the energetic particle morphology observed by the Atmosphere Explorer

    Get PDF
    Simultaneous measurements of the auroral zone particle precipitation and the ion convection velocity by Atmosphere Explorer show a consistent difference between the location of the poleward boundary of the auroral particle precipitation and the ion convection reversal. The difference of about 1.5 degrees of invariant latitude is such that some part of the antisunward convection lies wholly within the auroral particle precipitation region. The nature of the convection reversals within the precipitation region suggests that in this region the convection electric field is generated on closed field lines that connect in the magnetosphere to the low latitude boundary layer

    A satellite anemometer

    Get PDF
    This report describes the design, development, and testing of components of a satellite anemometer, an instrument for measuring neutral winds in the upper atmosphere from a satellite platform. The device, which uses four nearly identical pressure sensors, measures the angle of arrival of the bulk neutral flow in the satellite frame of reference. It could also be used in a feedback loop to control spacecraft attitude with respect to the ram velocity direction. We have now developed miniaturized ionization pressure gauges that will work well from the slip flow region near 115 km up to the base of the exosphere, which covers the entire altitude range currently being considered for Tether. Laboratory tests have demonstrated a very linear response to changes in ram angle out to +/- 20 deg. (transverse wind component of 2.7 km s(exp -1)) from the ram, and a monotonic response to out beyond 45 deg. Pitch (vertical wind) and yaw (horizontal wind) can be sampled simultaneously and meaningfully up to 10 Hz. Angular sensitivity of 30 arc seconds (approximately 1 ms(exp -1) is readily attainable, but absolute accuracy for winds will be approximately 1 deg (130 m/s) unless independent attitude knowledge is available. The critical elements of the design have all been tested in the laboratory

    Proceedings of the 1st Space Plasma Computer Analysis Network (SCAN) Workshop

    Get PDF
    The purpose of the workshop was to identify specific cooperative scientific study topics within the discipline of Ionosphere Magnetosphere Coupling processes and to develop methods and procedures to accomplish this cooperative research using SCAN facilities. Cooperative scientific research was initiated in the areas of polar cusp composition, O+ polar outflow, and magnetospheric boundary morphology studies and an approach using a common metafile structure was adopted to facilitate the exchange of data and plots between the various workshop participants. The advantages of in person versus remote workshops were discussed also
    • …
    corecore