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Abstract

Simultaneous measurements of the auroral zone particle precipi-

tation and the ion convection velocity by Atmosphere Explorer show a

consistent difference between the location of the poleward boundary of

the auroral particle precipitation and the ion convection reversal.

The difference, of about 1.5° of invariant latitude, is such that some

part of the antisunward convecu',on lies wholly within the auroral

particle precipitation region. The nature of the convection reversals

within the precipitation region suggests that in this region the con-

'	 vection electric field is generated on closed field lines that connect

in the magnetosp%ere to the low latitude boundary layer.
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Introduction

One of the outstanding problems of auroral physics still facing us after

more than two decades of satellite based research is that of the fundamental,

simultaneous, morphological relationships between low altitude convection

(electric field), currents, and particle fluxes (4 100 keV). Past missions

have yet to successfully includo all of the requisite instruments.

A confusion that this ins?rumental deficit generates is in the precise

meaning of the term "polar cap," although it is-generally accepted that the

polar cap includes that region whose magnetic .field maps into the distant magneto-

tail lobe.	 At present the term polar cap is used (and defined) when describ-

e	 ing auroral particle precipitation, currents, convection, and optical data both

individually and in combination. Various physical conclusions have been derived

from using these definitions based on partial data sets and several contradic-

tons have arisen. Chief among these is the determination or the "last closed

field line" and the morphology of plasma, fields, and currents observed relative

to this boundary.

The existence of a two cell convection pattern at high latitudes has been

consistently confirmed by in-situ measurements of the ionospheric electric field

made on rockets and satellites (Stern, 1977). Such a convection pattern leads quite

naturally to the definition of a boundary near dawn and dusk that separates plasma

flow at the highest latitudes, which has a component away from the sun, from flow

at lower latitudes with a component toward the sun. This boundary, which has

been called "the polar cap boundary," (and last closed field line, Gurnett and

Frank, 1973) can be quite difficult to define near noon and midnight since the

dominant components of the plasma flow there are not necessarily in the east-west

direction	 (Heppner, 1972). It should also be noted that the two cell con-

vection pattern may exist in a magnetospheric field topology that is completely

closed (Ax.ford and Hines, 1961) as well as one that is open (Dungey, 1961). Thus
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the polar cap boundary defined by electric field or plasma convection measure-

ments alone cannot be used to uniquely denote a boundary between open and

closed field line::.

Frank and Gurnett (1971) and GurneCt and Frank (1973) used simultaneous

plasma, energetic particle, and electric field data to investigate the relation-

ships between the convection electric field, the energetic particle morphology,

and the open or closed nature of the magnetic field. They concluded that near the

dayside cusp the 45 ;;eV electron trapping boundary, the gross convection electric

field reversal, and the cusp equatorward boundary were colocated. They inferred

further that on the dayside the electric field reversal marked the boundary

between open and closed magnetic field lines. On the nightside, however, it

was evident that the convection reversal usually lay within the "inverted V"

precipitation regions, sometimes poleward and sometimes equatorward of the

electron trapping region.

More recent data indicate that the conclusions mentioned in the previous

paragraph may not be correct. Kintner et al. (1978) have shown that the equator-

ward boundary of the cusp identified by 180 eV electron precipitatiorA * is not
r

coincident with the convection electric field reversal and is therefore not a

good indicator of the open and closed field line boundary. Similar conclusions

were reached by Heelis et al. (1976). In fact McDiarmid et al. (1976) have already
i

shown on the basis of concurrent plasma and energetic particle data that the cusp

is largely on closed field lines. In a later paper McDiarmid et al. (1979)

employed concurrent energetic particle, plasma, and magnetic perturbation data

to deduce a new "polar cap boundary" based on the maximum magnetic perturbation

in the cleft. Such a definition when combined with the particle data placed most

of the cleft region (McDiarmid et al., 1976) on closed field lines.

V
0.

'WG"^.Y'Q._ima..^^Sb..:u_t4Nf.L'Y.t-' 	 .1.:.^:.:., .^ 	 ,^^:.^.,,w	 .%L	 2	 Ytl.ew...'vT YAti,:.. rew,.Lrt tYr 	 ...^.. I...v.^....w. 	•.... s....r_... 	 +..Y^J'.....t	 ..r........... .^}-::nru.. a... 	 ^^aL.[ w._	 ..vti'-3.4 ^v^W, .SS..2..._,r.... ^ ..... 	 .v ... _ ._.. ., ..



R

-3-

In a recent paper (McDiarmid et al., 1973) concurrent energetic electron,

auroral electron, and magnetic field observations have been reported for the

first time. In this paper the plasma convection direction was obtained from

perturbations of the magnetic field relative to a model field. Using this method

a comparison of -20 keV electrons and auroral electrons, with the concurrently

observed magnetic perturbations, led McDiarmid et al. to conclude that in the

region studied 20300 to 0900 and 1500 to 2100 MLT) (1) the reversal of convec-

tion from antisunward to sunward occurred within the poleward portion of the

low altitude plasma sheet but not at its poleward boundary, (2) the plasma sheet

is on closed field lines during these periods, thus placing the gross convection

(electric field) reversal boundary on closed field lines, and (3) the poleward

portion of the low-altitude plasma sheet connects along magnetic field lines to

the magnetospheric boundary layer. The conclusions of McDiarmid et al. (1973)

are in direct contradiction to the earlier mentioned Gurnett and Frank (1973)

hypothesis, which used the electr;tc field reversal as the indicator of the

first open/closed field line boundary. The earlier criterion of Gurnett and

Frank leads one to place, at times, a large fraction of the low-altitude extension

of the plasma sheet on open field lines. Thus at present no consistent picture

has emerged on what constitutes "the polar cap."

As an aid to distinguishing boundaries and features in the energetic
I

particle precipitation at high latitudes, Winningham et al. (1975) coined the

terms BPS (Boundary Plasma Sheet) and CPS (Central Plasma Sheet) + to describe the

temporal and spatial morphology of low altitude auroral electrons, The CPS was

identified as a region of relatively uniform morphology as observed in an

energy-time spectrogram. The spectra in this region are a combination of a

Maxwellian plus power low spectrum (Deehr et al., 1976, Winningham et al., 1973, and

Meng et al., 1978). In comparison the BPS is a region in which latitudinally struc-

tured precipitation is observed (Winningham et al,, 1975, Figure 3a; Deehr et al.,
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1976; and Meng at al., 1978) and in which substorm .arcs occur (neehr at al.,

1976; Lui at al., 1977; and Winningham, at al., 1978). Electron spectra within

the BPS exhibit a wide range of forms and their exact nature depends on their

position relative to an auroral surge (Meng at al., 1978).

Based on the criterion for the BPS and CPS given by Winningham at al.,

(1975) and elaborated upon by Meng at al. (1978), the field line tilt reversal

of McDiarmid at al. (1978) occurs in the BPS when their auroral electron flux

profiles are examined. Thus their conclusions translate to the BPS being con-

nected to the magnetospheric boundary layer, the BPS and CPS being on closed field

lines, and the gross convection reversal occurring within the BPS during the times

they studied.

In the present paper we will present results from the AE-C and -D

energetic particle and thermal ion velocity instruments. Four boundaries will

be scaled; the CPS equatorial edge, the CPS/BPS boundary, the BPS poleward

edge, and the gross convection reversal. The definitions used earlier by

Winningham at al., (1975) and reiterated in a previous paragraph will be used

for scaling the particle data and the definitions of shear and rotational
rr

reversals given by Heelis and Hanson (1979) will be used for scaling the drift

data.
j

The auroral particle results will be used as a bridge to other data sets

that contain energetic particles, magnetic field, and optical results. An attempt

will be made, with arguments of similarity to other data sets, to determine

the region and field line topology in which the plasma convection reverses from

anti-sunward to sunward. Comparison will be made to results in the equatorial

plane and conclusions drawn as to rile topological relationship between low and

high altitude convection and the "openness" or "closedness" of the portion of

the magnetosphere most relevant to low altitude auroral zone phenomena.

t.._.	 ti
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Instrumentation

The data used in this study were taken from AE-C and AE-D. The AE-C

spacecraft was launched in December, 1973 into a 68° inclination orbit with

initial nominal apogee and perigee of 4000 km and 150 ksn, respectively. After

about 1 year of operation in an elliptical orbit, the orbit was circularized

and the satellite operated at various altitudes between 280 km and 450 km. The

AE-D spacecraft was launched in October 1975 into a 90° inclination orbit with

the same initial apogee and perigee as AE-C and operated in this orbit until

its demise in February 1976. Both satellites were utilized for roughly equal

numbers of orbits in a spinning (4 rpm) and a despun (1 revolution per orbit)

mode.. Data used in this study were obtained when the spacecraft were despun.

The ion convection velocity is obtained from the RPA and the Drift Meter and

has an overall accuracy of +10% or +40 m s -1 , whichever is larger. Details of

the instrument and techniques involved are given by Hanson et al. (1973) and

Hanson and Heelis (1975). The energetic particle spectra are obtained from

tl-e low energy electron experiment (LEE) which measured the differential flux

of electrons in 16 contiguous energy channels covering the range 200eV to
'r

25 keV (Hoffman et al., 1973). On AE-C two analyzers, one for electrons and

one for ions, were used to step through the entire spectrum and another was

used for fixed energy electrons. On AE-D, three analyzers were used for stepping
i

and 16 were operated at fixed energy. Details of the AE spacecraft and full

instrumentation appear in the April 1973 issue of Radio Science.
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Observations

We report here the results from 87 crossings of the nightside auroral

zone by Atmosphere Enplorers C and D. The data were restricted to times when

the convection reversal boundary could be unambiguously located from ion drift

velocity measurements and at the same time the auroral particle detector was

sampling a component of the primary spectrum. The auroral particle spectro-

grams of differential energy flux versus energy.and time were used to locate

the equatorial edge of >200 eV particle-precipitation, the poleward edge of the

auroral precipitation and the boundary between the boundary plasma sheet precipi-

tation and the central plasma sheet precipitation. Figure 1 shows the energetic

particle spectrogram for a pass of AE-C across the nightside high latitude

ionosphere in the southern hemisphere. The equatorwardmost precipitation

region shows a uniform total energy flux and spectral shape with a mean energy

between 1 and 5 keV from about 19:10 UT to 19:11 UT. Examination of the

detailed spectral data indicates that the spectra in this region are comprised

of a lower energy (< 1 to 2 keV) power law portion plus a higher energy section

that is relatively flat for a range of energies (ru 1 to 10 keV) and then precipi-

tiously drops in flux. Such spectra are consistent with the defini kon of the

CPS given earlier. The CPS is distinguished from the BPS by the onset of peaked

spectra (inverted V's) and a much more structured and larger total energy input

that may vary from 0.1 to 3 ergs/cm2 ster sec (i.e. greater spatial/temporal

structure) in the region between 19:11 UT and 19:12:30 UT. The disappearance

of precipitation at energies above 1 keV quite precisely defines the boundary

between the poleward edge of the auroral zone and the polar rain. The abrupt

disappearance of proton precipitation at this boundary may also be seen.

w
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on the morning side the CPS has a much higher mean energy but is again quite

separable from the BPS due to the difference in spectral type. The shaded area

indicates the degree of uncertainty in determination of the CPS/BPS boundary,

Figure 2 shows the two components of the horizontal ion velocity measured

simultaneously with the data shown in Figure 1. V  along the satellite track

and V  perpendicular to the satellite track are plotted as a function of time

for comparison with Figure 1 and on an invariant latitude magnetic local time

dial to more clearly illustrate the nature of the convective Flow. Here a

visible description of the convection reversals separating sunward from anti-

sunward flow Agrees easily with the quantitative classification given by Heelis

and Hanson (1979). Both reversals can be quite precisely located at 19:11.50

and 19:19:20 ZIT and may be called "shear" in nature since there is only a very

small component of flow (V x) across the reversal. In both cases it can be

seen that the poleward partAcle boundary lies poleward of the convection

reversal. The format of the AB spectrograms is identical and directly com-

parable to that used by Winningham et al. (1975) to originally define the BPS

and CPS. The detailed spectral characteristics that distinguish thA BPS and
r

CPS have been given by Winningham et al. (1975), Deehr et al, (1976) and

Meng et al. (1978) and were repeated earlier. While this leads to some

uncertainty in the location of the boundary between the CPS and the BPS it

does not invalidate the finding that the poleward edge of the BPS lies poleward

of the shear convection reversal. These displacements are easily resolvable,

being about A0 sec (=300 km) on the evening side and about 60 sec ( = 500 km) an

the morning side. It should also be noted that in this case, where shear reversals

define the convection boundary, the reversals are embedded in the BPS precipitation
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region. Thus the BPS occupies a region where the plasma in the ionosphere

is moving both sunward and antisunward.

In addition to shear reversals separating sunward and antisunward convection

near dawn and dusk, the high latitude ionospheric convection pattern shows evidence

for well defined rotational reversals as the antisunward flow at high latitudes

moves toward lower la ►;itudes near midnight. Figures 3 and 4 are typical of the

observed relationships between the particle precipitation regions and the. convec-

tion reversal in such cases. Here we focus attention on the rotational reversal

that is quite clearly seen near 22:00 hrs UT and 67° invariant latitude in Fig-

ure 4. This figure shows that the reversal is characterized by at least 1 minute

A	 (-450 km) along the satellite track at 20:39 UT where the larger component of

ion velocity V  is across the reversal boundary. Again the equatorward and

poleward edges of the particle precipitation zone can quite easily be seen in

the auroral particle spectrogram. The boundary between the CPS and the BPS is

observed at -20:40:45 UT as a change to peaked inverted V spectra. Reference

to Figure 4 demonstrates that the CPS/BPS boundary lies at or across the rota-

tional convection reversal.

The fact that the BPS may lie wholly on antisunward convecting field tubes

associated with rotational flow is demonstrated further in Figure 5.i This figure

shows two rotational reversals at magnetic local times of about 22:00 hrs and

02:30 hrs. These reversals mark the boundary between antisunward and sunward

flow and also the boundary between BPS and CPS particle precipitation. In this

case the entire region of antisunward flow coincides with the region of BPS

precipitation. Observations of this kind must imply that as we move along the

meridian from midnight toward noon we must at some place encounter the boundary

between the BPS and the polar rain (Winningham and Heikkila, 1974) in a region

of antisunward convection.

Figure 6 shows.such an observation.' This pass of AE-D across th northern

hemisphere shows again that the CPS/BPS boundary coincides approximately with

the rotational reversal even near midnight. Again the BPS resides on a region

•	 w
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-of antisunward convection and the boundary between the BPS and the polar

rain shows no significant signature in the convection pattern.

Examination of 87 passes of Atmosphere Explorer in the high latitude iono-

sphere has been carried out to identify the convection reversal boundary and the

boundaries of the particle precipitation zones described previously. We have exam-

ined this data both statistically and on a case by case basis. Statistically each

boundary has been represented by a circle using'a least squares technique to determine

the center and the radius. The locations of the polewaxd edge of the particle

precipitation zone, the CPS /BPS boundary, the equatorward edge of the precipi-

tation zone and the ion convection velocity reversal are shown in Figure 7-

Also shown by the solid lines avi;^ the best fit circles to these boundaries. The

MLT and latitude of the center and the radius in degrees for each circle are shown

in the top right of eac h figure. It can be seen that very little data

from the dayside were included in this study and no attempt was made

to .Limit the observations to a similar magnetic activity condition..

The significance of these results lies in the statistipul displacement of the cou-

vection reversal boundary with respect to the poleward edge of the particle

precipitation zone. While we cannot attribute any physical significance to

the position and size of the circles, it is worth noting that the centers and

radii of the best fit circles for the CPS /BPS and convection reversal are

very close to the values reported by Meng et al. (1977) for the'quiet auroral

belt circle. Figure 8 shows the relative positions of the CPS and BPS precipi-

tation zones with respect to the convection reversal boundary. The CPS

precipitation zone is seen (Figure 7) to increase in extent between-midnight and

06:00 hrs MLT as one would expect in accordance with the gradient and

curvature drift of particles in the equatorial plane. Near midnight the

CPS/BPS boundary and convection reversal boundary are quite close
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together in accordance with our findings that the rotational reversals tend

to coincide with the CPS/BPS boundary. The displacement of the point of

closest coincidence toward 211 hrs is most likely produced by the statis-

tical domination of points in the 24:00 hrs to 06:00 hrs MLT sector. At

other magnetic local times on the nightside the convection reversal lies

within the BPS precipitation zone with the poleward edge of this zone typically

lying about 2 0 poleward of the convection reversal.

On a case by case basis, passes that cut almost radially through the auroral

zone have been considered. For each satellite pass the magnetic local times of the

poleward and equatorial edge of the particle precipitation zone were recorded. Only

passes where these local times differed by less than 2 hrs in the nighttime MLT sector

between 18 :00 hrs to 06:00 hrs were considered. In the most favorable longitude

zone the AE-C satellite moves from 62° to 72° invariant latitude in approxi-

mately 1 hour of magnetic focal time. For the selected passes the position

of the convection reversal is plotted against the position of the poleward

particle boundary and the CPS/BPS boundary in Figure 9. Here the solid lines

show where the two boundaries would be coincident. Of the 32 cases 6nsidered

only four show coincidence between the convection reversal and the poleward

edge of the particle precipitation region. For all other cases the poleward

particle boundary lies poleward of the convection reversal and tle average

displacement is about 1.5° of invariant latitude.. It can also be seen that

in general the convection reversal lies poleward of the CPS/BPS boundary. This

indicates that the change from sunward to antisunward convection in the night-

side ionosphere occurs within the BPS and in a region usually associated with

closed field lines, i.e. the low altitude extension of the plasma sheet.

w
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Discussion

It has been pointed out that the AG drift (electric field) measure-

ments used here cannot distinguish between open and closed field line

geometriesbut we may appeal to previous studies of the location of

trapped 40 keV electron boundary relative to the lower energy BPS precipi-

tation region (McDiarmid et al., 1976) to conclude that the BPS is asso-

ciated with field tubes that are closed. The results shown here indicate
f

that the BPS precipitation region may be wholly or partially in a

region associated with antisunward flow in the ionosphere. This confirms

the earlier inferences of McDiarmid at al. (1978) and Winningham et al.

(1978) based on indirect evidence. The relevance of these findings to the

R	 flow of plasma in the magnetotail depends on our ability to relate flow regimes

in the ionosphere to corresponding regimes in the magnetosphere. The nature

of the convection reversals which lie within the BPS may be an important factor

in determining the location'of different plasma regimes in the magnetotail.

Figure 10 shows,schematically,corresponding particle and flow regions in the polar

ionosphere and the magnetotail. We suggest that a shear reversal quite uniquely

distinguishes flow that is sunward from flows that is antisunward, bdth in the

ionosphere and in the equatorial plane of the magnetosphere. The region of shear

reversals is thus placed at the flanks of the magnetotail.' Since BPS particle

precipitation is generally observed poleward and equatorward of.the reversal,

the reversal occurs within the equatorial boundary layer as shown. If some region

of the antisunward flow poleward of a shear reversal results from a viscously

driven convection pattern, it might be expected that the BPS precipitation would

result from plasma interactions at the boundary of the solar wind and the

magnetopause and at the boundary between the antisunward convecting viscous

layer and the sunward convecting plasma sheet. In such a case the BPS would
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span the convection reversal as observed (c L• Sonnerup, 1979), The observation

of shear convection reversals that lie equatorward of the poleward BPS precipl.-

'cation region as shown in rigures 1 and 2 is the most convincing evidence at

low altitudes for antisunward flow in a boundary layer of the magnetotail.

At local times toward midnight we have shown that the more commonly observed

rotational reversals are usually associated with the CPS/BPS boundary. The

rotational reversa., mapping into the equatorial plane is rather arbitrary and

serves only to indicate its relationship to the particle precipitation regions.

It is also true that the boundary between the CPS and BPS may not always be

well defined. The point to note here is that a rotational reversal does not

necessarily separate oppositely flowing plasma regions in the magnetosphere.

In general, after the plasma has undergone a rotational reversal. (and has by

definition a sunward component in the ionosphere) it is observationally asso-

ciated with CPS particle precipitation. In these cases we associate this flow

regime with sunward flow on,closed field lines in the plasma sheet. The CPS

particle precipitation could result from simple betatron acceleration as the

particles convect toward the earth and their mirror points move to lower altitudes.

In the midnight period dominated by rotational flow it should be noted thatbeforc

undergoing a clear rotational .reversal, the entire antisunward flowing plasma region

in the ionosphere may be associated with BPS particle precipitation. It can be seen th

this antisunward flowing region in the ionosphere is associated with sunward
It

flowing plasma in the equatorial plane on highly distended, closed non-dipolar

field lines. Corresponding points labelled A and B on the convective trajectories

in the ionosphere and magnetosphere are shown to illustrate this behavior. It

should be pointed out that with the conclusions drawn here, the point at which
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the convection reversal ceases to be a shear, marks a corresponding point

in the equatorial plane where the antisunward flow in the boundary layer

begins to turn sunward. if we do not consider the existence of some widely

distributed well ordered pattern of Field aligned potential drops, which may

lead to the different location of the convection reversal and the poleward BPS

boundary, then we must conclude that at least some portion of the two cell

convection pattern of both flow senses observed at high latitudes in the iono-

aphere, exists entirely on closed field lines. From the point of view of low

altitude observations we may regard the magnetosphere as open or closed, depending

on the geometry of the magnetic flux tubes that are convecting antisunward at high

latitudes. Then, again.; without the assumption about field aligned potentials,

must conclude from this study that a "completely" open magnetosphere, i.e. a mag-

netosphere in which all antisunward convecting field tubes are open, does not exist.

In the magnetotail we expect a plasma sheet cross section that has its flanks dragged

further away from the earth than its center (Russell, 1977) and a convection electric

field generated in the low latitude boundary layer (Eastman et a1., 1976) by a

viscous interaction between the solar wind and the magnetospheric plasma. We

note Russell (1977) has pointed out that such a magnetotail cross section does

not imply a completely closed magnetosphere. Our observations are consistent

with either a completely closed magnetosphere or a partially open and partially
6

closed -me -gnetosphere, (Crooker, 1979), but not an open magnetosphere in which

the last closed field line, the end of the plasma sheet, and the convection

reversal are coincident.

It is customarily thought that the polar rain precipitation (Winningham

and Heikkila, 1974) is associated with open field tubes attached to the inter-

planetary magnetic field. In such a configuration the cleft marks the region

in which the connection of interplanetary magnetic field and geomagnetic field

TM i81li±G'LASk '^
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takes place. Then the antisunward convection in the central polar cap corresponds

to the antisunward convection in the solar wind with subsequent convection across

a nightside neutral line near the equatorial plane in the magnetotail. Presum-

ably this neutral Line, which separates open field lines from closed field lines,

lies at the poleward boundary of the BPS (and equatorward boundary of the polar

Sin) on the nightside of the polar cap as shown in Figure 10. The observations

reported here show no readily observable ionospheric flow characteristics across

this boundary. However, in the ionosphere the boundary between the BPS and the

polar rain precipitation is very sharp and it is necessary to reconcile this

difference in particle populations within different regions in the plasma sheet

in order that a completely closed magnetosphere be acceptable. This is perhaps

a more serious constraint on a closed model than the entry of solar flare particles

discussed by Piddington (1979).

i

r
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Conclusions

A statistical study and a case by case study of simultaneous particle

and ion convection velocity measurements from Atmosphere Explorer show that

at all local times between 18:00 hrs and 06:00 hrs the gross convection

reversal boundary lies equatorward of the boundary between the discrete, highly

structured BPS	 precipitation and the polar rain. This study reveals quite con-

vincin y evidence for the existence of shear and rotational convection reversals on

closed field lines. The observed morphology is consistent with a partially closed

magnetosphere its which some portion of the convection electric field is

generated in the low latitude boundary layer. 	 An open magnetosphere in

which the last closed field line, the plasma sheet outer boundary, and the

convection reversal are coincident is not immediately consistent with these

findings.,
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Figure Captions

Figure 1.	 Energetic particle spectrogram for southern hemisphere pass of

AE-C orbit 13064. The position of the BPS and CPS are shown and

the shaded region denotes the degree of uncertainty in determining

the CPS/BPS boundary.

Figure 2.	 Simultaneously measured horizontal'ion convection velocity for

AE-C orbit 13064 showing the existence of shear reversals marking

the boundary between sunward and antisunward convection. The

position of the CPS and BPS are shown on all panels.

Figure 3.	 Energetic particle spectrogram for southern hemisphere pass of

AE-C orbit 11643.

Figure 4.	 Simultaneously measured horizontal ;ton convection velocity for

AE-C orbit 13064 showing the existence of rotational reversals

marking the boundary between sunward and antisunward convection.

The position of the CPS and BPS are shown on all panels.
'r

Figure 5.	 Observed morphology of the BIA S and CPS near midnight showing

the BPS entirely on antisunward convecting field tubes.

Figure 6 .	 Simultaneous measurements from AE-D show the boundary between

the BPS and the polar rain near midnight is on antisunward

convecting field tubes.

Figure 7.	 Individual data points and least square fit circles denoting th,

particle and convection reversal boundaries. The position of the

center and radius of each circle is shown in the top right.
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Figure 8.

	

	 Statistical placement of the convection reversal, within the

particle precipitation regions.

Figure 9.

	

	 Results of a case by case study of the relative positions of the

particle and convection boundaries. The solid line denotes the

position of colocated boundaries.

Figure 10. Schematic configuration of ionosphbric and magnetospheric

particle and flow regions.
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