78 research outputs found

    Highly selective PtCo bimetallic nanoparticles on silica for continuous production of hydrogen from aqueous phase reforming of xylose

    Get PDF
    Hydrogen (H2) is a promising energy vector for mitigating greenhouse gas emissions. Lignocellulosic biomass waste has been introduced as one of the abundant and carbon-neutral H2 sources. Among those, xylose with its short carbon chain has emerged attractive, where H2 can be catalytically released in an aqueous reactor. In this study, a composite catalyst system consisting of silica (SiO2)-supported platinum (Pt)-cobalt (Co) bimetallic nanoparticles was developed for aqueous phase reforming of xylose conducted at 225 °C and 29.3 bar. The PtCo/SiO2 catalyst showed a significantly higher H2 production rate and selectivity than that of Pt/SiO2, whereas Co/SiO2 shows no activity in H2 production. The highest selectivity for useful liquid byproducts was obtained with PtCo/SiO2. Moreover, CO2 emissions throughout the reaction were reduced compared to those of monometallic Pt/SiO2. The PtCo bimetallic nanocatalyst offers an inexpensive, sustainable, and durable solution with high chemical selectivity for scalable reforming of hard-to-ferment pentose sugars

    A Novel Methyltransferase Methylates Cucumber Mosaic Virus 1a Protein and Promotes Systemic Spreadâ–ż

    No full text
    In mammalian and yeast systems, methyltransferases have been implicated in the regulation of diverse processes, such as protein-protein interactions, protein localization, signal transduction, RNA processing, and transcription. The Cucumber mosaic virus (CMV) 1a protein is essential not only for virus replication but also for movement. Using a yeast two-hybrid system with tobacco plants, we have identified a novel gene encoding a methyltransferase that interacts with the CMV 1a protein and have designated this gene Tcoi1 (tobacco CMV 1a-interacting protein 1). Tcoi1 specifically interacted with the methyltransferase domain of CMV 1a, and the expression of Tcoi1 was increased by CMV inoculation. Biochemical studies revealed that the interaction of Tcoi1 with CMV 1a protein was direct and that Tcoi1 methylated CMV 1a protein both in vitro and in vivo. The CMV 1a binding activity of Tcoi1 is in the C-terminal domain, which shows the methyltransferase activity. The overexpression of Tcoi1 enhanced the CMV infection, while the reduced expression of Tcoi1 decreased virus infectivity. These results suggest that Tcoi1 controls the propagation of CMV through an interaction with the CMV 1a protein

    Effect of Baicalin on Wound Healing in a Mouse Model of Pressure Ulcers

    No full text
    One of the most frequent comorbidities that develop in chronically ill or immobilized patients is pressure ulcers, also known as bed sores. Despite ischemia-reperfusion (I/R)-induced skin lesion having been identified as a primary cause of pressure ulcers, wound management efforts have so far failed to significantly improve outcomes. Baicalin, or 5,6,7-trihydroxyflavone, is a type of flavonoid which has been shown to possess a variety of biological characteristics, including antioxidative and anti-inflammatory effects and protection of I/R injury. In vitro wound scratch assay was first used to assess the function of baicalin in wound healing. We established a mouse model of advanced stage pressure ulcers with repeated cycles of I/R pressure load. In this model, topically applied baicalin (100 mg/mL) induced a significant increase in the wound healing process measured by wound area. Histological examination of the pressure ulcer mouse model showed faster granulation tissue formation and re-epithelization in the baicalin-treated group. Next, baicalin downregulated pro-inflammatory cytokines (IL-6 and IL-1β), while upregulating the anti-inflammatory IL-10. Additionally, baicalin induced an increase in several growth factors (VEGF, FGF-2, PDGF-β, and CTGF), promoting the wound healing process. Our results suggest that baicalin could serve as a promising agent for the treatment of pressures ulcers
    • …
    corecore