4 research outputs found

    The CARMENES search for exoplanets around M dwarfs. First visual-channel radial-velocity measurements and orbital parameter updates of seven M-dwarf planetary systems

    Get PDF
    Stars and planetary system

    The host of the Type I SLSN 2017egm: A young, sub-solar metallicity environment in a massive spiral galaxy

    No full text
    Context. Type I superluminous supernova (SLSN) host galaxies are predominantly low-metallicity, highly star-forming (SF) dwarfs. One of the current key questions is whether Type I SLSNe can only occur in such environments and hosts. Aims. Here we present an integral-field study of the massive, high-metallicity spiral NGC 3191, the host of SN 2017egm, the closest Type I SLSN known to date. We use data from PMAS/CAHA and the public MaNGA survey to shed light on the properties of the SLSN site and the origin of star formation in this non-starburst spiral galaxy. Methods. We map the physical properties of different H ii regions throughout the galaxy and characterise their stellar populations using the STARLIGHT fitting code. Kinematical information allows us to study a possible interaction with its neighbouring galaxy as the origin of recent star formation activity which could have caused the SLSN. Results. NGC 3191 shows intense star formation in the western part with three large SF regions of low metallicity. Taking only the properties of emitting gas, the central regions of the host have a higher metallicity, a lower specific star formation rate, and lower ionisation. Modelling the stellar populations gives a different picture: the SLSN region has two dominant stellar populations with different ages, the younger one with an age of 2-10 Myr and lower metallicity, likely the population from which the SN progenitor originated. Emission line kinematics of NGC 3191 show indications of interaction with its neighbour MCG+08-19-017 at ∼45 kpc, which might be responsible for the recent starburst. In fact, this galaxy pair has hosted a total of four SNe, 1988B (Type Ia), SN 2003ds (Type Ic in MCG+08-19-017), PTF10bgl (Type II), and 2017egm, underlying the enhanced SF in both galaxies due to interaction. Conclusions. Our study shows that care should be taken when interpreting global host and even gas properties without looking at the stellar population history of the region. The SLSNe seem to be consistent with massive stars (>20 M) requiring low metallicity (<0.6 Z), environments that can also occur in massive late-type galaxies, but not necessarily with starbursts.© ESO, 2018.We thank the referee for the constructive comments that have improved the paper. We also thank Steve Schulze and Yan Lin for their important comments to the paper. L.I., C.T., Z.C., A.d.U.P., and D.A.K. acknowledge support from the Spanish research project AYA2014-58381-P. C.T. and A.d.U.P. also acknowledge support from Ramon y Cajal fellowships RyC-2012-09984 and RyC-2012-09975. D.A.K. and Z.C. acknowledge support from Juan de la Cierva Incorporacion fellowships IJCI-2015-26153 and IJCI-2014-21669. R.G.B. acknowledges support from the Spanish Ministerio de Economia y Competitividad, through projects AYA2016-77846-P and AYA2014-57490-P. L.I. wishes to thank Anna Serena Esposito for her kind availability and support in organising the figures presented in this paper.Peer reviewe

    The CARMENES search for exoplanets around M dwarfs: First visual-channel radial-velocity measurements and orbital parameter updates of seven M-dwarf planetary systems

    No full text
    The appendix tables are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A117Context. The main goal of the CARMENES survey is to find Earth-mass planets around nearby M-dwarf stars. Seven M dwarfs included in the CARMENES sample had been observed before with HIRES and HARPS and either were reported to have one short period planetary companion (GJ 15 A, GJ 176, GJ 436, GJ 536 and GJ 1148) or are multiple planetary systems (GJ 581 and GJ 876). Aims. We aim to report new precise optical radial velocity measurements for these planet hosts and test the overall capabilities of CARMENES. Methods. We combined our CARMENES precise Doppler measurements with those available from HIRES and HARPS and derived new orbital parameters for the systems. Bona-fide single planet systems were fitted with a Keplerian model. The multiple planet systems were analyzed using a self-consistent dynamical model and their best fit orbits were tested for long-term stability. Results. We confirm or provide supportive arguments for planets around all the investigated stars except for GJ 15 A, for which we find that the post-discovery HIRES data and our CARMENES data do not show a signal at 11.4 days. Although we cannot confirm the super-Earth planet GJ 15 Ab, we show evidence for a possible long-period (P = 7030 d) Saturn-mass (msini = 51.8M) planet around GJ 15 A. In addition, based on our CARMENES and HIRES data we discover a second planet around GJ 1148, for which we estimate a period P = 532.6 days, eccentricity e = 0.342 and minimum mass msini = 68.1M. Conclusions. The CARMENES optical radial velocities have similar precision and overall scatter when compared to the Doppler measurements conducted with HARPS and HIRES. We conclude that CARMENES is an instrument that is up to the challenge of discovering rocky planets around low-mass stars.© ESO, 2018.CARMENES is an instrument for the Centro Astronomico Hispano-Aleman de Calar Alto (CAHA, Almeria, Spain). CARMENES is funded by the German Max-Planck-Gesellschaft (MPG), the Spanish Consejo Superior de Investigaciones Cientificas (CSIC), the European Union through FEDER/ERF FICTS-2011-02 funds, and the members of the CARMENES Consortium (Max-Planck-Institut fur Astronomie, Instituto de Astrofisica de Andalucia, Landessternwarte Konigstuhl, Institut de Ciencies de l'Espai, Insitut fur Astrophysik Gottingen, Universidad Complutense de Madrid, Thuringer Landessternwarte Tautenburg, Instituto de Astrofisica de Canarias, Hamburger Sternwarte, Centro de Astrobiologia and Centro Astronomico Hispano-Aleman), with additional contributions by the Spanish Ministry of Economy, the German Science Foundation (DFG), the Klaus Tschira Stiftung, the states of Baden-Wurttemberg and Niedersachsen, the DFG Research Unit FOR2544 >Blue Planets around Red Stars>, and by the Junta de Andalucia. This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. This work used the Systemic Console package (Meschiari et al. 2009) for cross-checking our Keplerian and Dynamical fits and the python package astroML (VanderPlas et al. 2012) for the calculation of the GLS periodogram. The IEEC-CSIC team acknowledges support by the Spanish Ministry of Economy and Competitiveness (MINECO) and the Fondo Europeo de Desarrollo Regional (FEDER) through grant ESP2016-80435-C2-1-R, as well as the support of the Generalitat de Catalunya/CERCA programme. The IAA-CSIC team acknowledges support by the Spanish Ministry of Economy and Competitiveness (MINECO) through grants AYA2014-54348-C03-01 and AYA2016-79425-C3-3-P as well as FEDER funds. The UCM team acknowledges support by the Spanish Ministry of Economy and Competitiveness (MINECO) from projects AYA2015-68012-C2-2-P and AYA2016-79425- C3-1,2,3-P and the Spanish Ministerio de Educacion, Cultura y Deporte, programa de Formacion de Profesorado Universitario, under grant FPU15/01476. T. T. and M.K. thank to Jan Rybizki for the very helpful discussion in the early phases of this work. V.J.S.B. is supported by grant AYA2015-69350-C3-2-P from the Spanish Ministry of Economy and Competiveness (MINECO). J.C.S. acknowledges funding support from Spanish public funds for research under project ESP2015-65712-C5-5-R (MINECO/FEDER), and under Research Fellowship program >Ramon y Cajal> with reference RYC2012-09913 (MINECO/FEDER). The contributions of M.A. were supported by DLR (Deutsches Zentrum fur Luft- und Raumfahrt) through the grants 50OW0204 and 50OO1501. J.L.-S. acknowledges the Office of Naval Research Global (award No. N62909-15- 1-2011) for support. C.d.B. acknowledges that this work has been supported by Mexican CONACyT research grant CB-2012-183007 and the Spanish Ministry of Economy and Competitivity through projects AYA2014-54348-C3-2-R. J.I.G.H., and R.R. acknowledge financial support from the Spanish Ministry project MINECO AYA2014-56359-P. J.I.G.H. also acknowledges financial support from the Spanish MINECO under the 2013 Ramon y Cajal program MINECO RYC-2013-14875. V. Wolthoff acknowledges funding from the DFG Research Unit FOR2544 >Blue Planets around Red Stars>, project No. RE 2694/4-1.We thank the anonymous referee for the excellent comments that helped to improve the quality of this paper

    The CARMENES search for exoplanets around M dwarfs: High-resolution optical and near-infrared spectroscopy of 324 survey stars

    No full text
    The CARMENES radial velocity (RV) survey is observing 324 M dwarfs to search for any orbiting planets. In this paper, we present the survey sample by publishing one CARMENES spectrum for each M dwarf. These spectra cover the wavelength range 520¿1710 nm at a resolution of at least R >80 000, and we measure its RV, H¿ emission, and projected rotation velocity. We present an atlas of high-resolution M-dwarf spectra and compare the spectra to atmospheric models. To quantify the RV precision that can be achieved in low-mass stars over the CARMENES wavelength range, we analyze our empirical information on the RV precision from more than 6500 observations. We compare our high-resolution M-dwarf spectra to atmospheric models where we determine the spectroscopic RV information content, Q, and signal-to-noise ratio. We find that for all M-type dwarfs, the highest RV precision can be reached in the wavelength range 700¿900 nm. Observations at longer wavelengths are equally precise only at the very latest spectral types (M8 and M9). We demonstrate that in this spectroscopic range, the large amount of absorption features compensates for the intrinsic faintness of an M7 star. To reach an RV precision of 1 m s¿1 in very low mass M dwarfs at longer wavelengths likely requires the use of a 10 m class telescope. For spectral types M6 and earlier, the combination of a red visual and a near-infrared spectrograph is ideal to search for low-mass planets and to distinguish between planets and stellar variability. At a 4 m class telescope, an instrument like CARMENES has the potential to push the RV precision well below the typical jitter level of 3-4 m s-1. © ESO 2018.We thank an anonymous referee for prompt attention and helpful comments that helped to improve the quality of this paper. CARMENES is an instrument for the Centro Astronomico Hispano-Aleman de Calar Alto (CAHA, Almeria, Spain). CARMENES is funded by the German Max-Planck-Gesellschaft (MPG), the Spanish Consejo Superior de Investigaciones Cientificas (CSIC), the European Union through FEDER/ERF FICTS-2011-02 funds, and the members of the CARMENES Consortium (Max-Planck-Institut fur Astronomie, Instituto de Astrofisica de Andalucia, Landessternwarte Konigstuhl, Institut de Ciencies de l'Espai, Insitut fur Astrophysik Gottingen, Universidad Complutense de Madrid, Thuringer Landessternwarte Tautenburg, Instituto de Astrofisica de Canarias, Hamburger Sternwarte, Centro de Astrobiologia and Centro Astronomico Hispano-Aleman), with additional contributions by the Spanish Ministry of Economy, the German Science Foundation through the Major Research Instrumentation Programme and DFG Research Unit FOR2544 >Blue Planets around Red Stars>, the Klaus Tschira Stiftung, the states of Baden-Wurttemberg and Niedersachsen, and by the Junta de Andalucia. This work has made use of the VALD database, operated at Uppsala University, the Institute of Astronomy RAS in Moscow, and the University of Vienna. We acknowledge the following funding programs: European Research Council (ERC-279347), Deutsche Forschungsgemeinschaft (RE 1664/12-1, RE 2694/4-1), Bundesministerium fur Bildung und Forschung (BMBF-05A14MG3, BMBF-05A17MG3), Spanish Ministry of Economy and Competitiveness (MINECO, grants AYA2015-68012-C2-2-P, AYA2016-79425-C3-1,2,3-P, AYA2015-69350-C3-2-P, AYA2014-54348-C03-01, AYA2014-56359-P, AYA2014-54348-C3-2R, AYA2016-79425-C3-3-P and 2013 Ramon y Cajal program RYC-2013-14875), Fondo Europeo de Desarrollo Regional (FEDER, grant ESP2016-80435-C2-1-R, ESP2015-65712-C5-5-R), Generalitat de Catalunya/CERCA programme, Spanish Ministerio de Educacion, Cultura y Deporte, programa de Formacion de Profesorado Universitario (grant FPU15/01476), Deutsches Zentrum fur Luft- und Raumfahrt (grants 50OW0204 and 50OO1501), Office of Naval Research Global (award no. N62909-15-1-2011), Mexican CONACyT grant CB-2012-183007
    corecore