843 research outputs found
IEA EBC Annex83 positive energy districts
At a global level, the need for energy efficiency and an increased share of renewable energy sources is evident, as is the crucial role of cities due to the rapid urbanization rate. As a consequence of this, the research work related to Positive Energy Districts (PED) has accelerated in recent years. A common shared definition, as well as technological approaches or methodological issues related to PEDs are still unclear in this development and a global scientific discussion is needed. The International Energy Agencyâs Energy in Buildings and Communities Programme (IEA EBC) Annex 83 is the main platform for this international scientific debate and research. This paper describes the challenges of PEDs and the issues that are open for discussions and how the Annex 83 is planned and organized to facilitate this and to actively steer the development of PEDs major leaps forward. The main topics of discussion in the PED context are the role and importance of definitions of PEDs, virtual and geographical boundaries in PEDs, the role of different stakeholders, evaluation approaches, and the learnings of realized PED projects
The spectrum of a Saturn ring spoke from Cassini/VIMS
On 2008, July, the Cassini/VIMS spectrometer detected spokes on the Saturn's B ring for the first time. These are the first measurements of the complete reflectance spectrum of the spokes in a wide spectral range (0.35â0.51 ÎŒm). Here we will focus on a single broadâshaped spoke, imaged by VIMS on July, 9. Radiative transfer modeling supports a pure water ice composition for the spoke's grains, but their size distribution is found to be wider than previously thought: preliminary results yields a modal value of about 1.90 ÎŒm (reff = 3.5 ÎŒm, veff = 0.3) and a number density of about 0.01â0.1 grains/cm3. The unexpected abundance of micronâsized grains in the spoke may have implications for the formation models since the energy requirement increases by at least one order of magnitude. These kind of observations may also constrain the size selection effects thought to be produced by the forces governing the spokes' evolution
Capture, Reconstruction, and Representation of the Visual Real World for Virtual Reality
We provide an overview of the concerns, current practice, and limitations for capturing, reconstructing, and representing the real world visually within virtual reality. Given that our goals are to capture, transmit, and depict complex real-world phenomena to humans, these challenges cover the opto-electro-mechanical, computational, informational, and perceptual fields. Practically producing a system for real-world VR capture requires navigating a complex design space and pushing the state of the art in each of these areas. As such, we outline several promising directions for future work to improve the quality and flexibility of real-world VR capture systems
Planetary Rings
Planetary rings are the only nearby astrophysical disks, and the only disks
that have been investigated by spacecraft. Although there are significant
differences between rings and other disks, chiefly the large planet/ring mass
ratio that greatly enhances the flatness of rings (aspect ratios as small as
1e-7), understanding of disks in general can be enhanced by understanding the
dynamical processes observed at close-range and in real-time in planetary
rings. We review the known ring systems of the four giant planets, as well as
the prospects for ring systems yet to be discovered. We then review planetary
rings by type. The main rings of Saturn comprise our system's only dense broad
disk and host many phenomena of general application to disks including spiral
waves, gap formation, self-gravity wakes, viscous overstability and normal
modes, impact clouds, and orbital evolution of embedded moons. Dense narrow
rings are the primary natural laboratory for understanding shepherding and
self-stability. Narrow dusty rings, likely generated by embedded source bodies,
are surprisingly found to sport azimuthally-confined arcs. Finally, every known
ring system includes a substantial component of diffuse dusty rings. Planetary
rings have shown themselves to be useful as detectors of planetary processes
around them, including the planetary magnetic field and interplanetary
impactors as well as the gravity of nearby perturbing moons. Experimental rings
science has made great progress in recent decades, especially numerical
simulations of self-gravity wakes and other processes but also laboratory
investigations of coefficient of restitution and spectroscopic ground truth.
The age of self-sustained ring systems is a matter of debate; formation
scenarios are most plausible in the context of the early solar system, while
signs of youthfulness indicate at least that rings have never been static
phenomena.Comment: 82 pages, 34 figures. Final revision of general review to be
published in "Planets, Stars and Stellar Systems", P. Kalas and L. French
(eds.), Springer (http://refworks.springer.com/sss
Assessment of a novel, capsid-modified adenovirus with an improved vascular gene transfer profile
<p>Background: Cardiovascular disorders, including coronary artery bypass graft failure and in-stent restenosis remain significant opportunities for the advancement of novel therapeutics that target neointimal hyperplasia, a characteristic of both pathologies. Gene therapy may provide a successful approach to improve the clinical outcome of these conditions, but would benefit from the development of more efficient vectors for vascular gene delivery. The aim of this study was to assess whether a novel genetically engineered Adenovirus could be utilised to produce enhanced levels of vascular gene expression.</p>
<p>Methods: Vascular transduction capacity was assessed in primary human saphenous vein smooth muscle and endothelial cells using vectors expressing the LacZ reporter gene. The therapeutic capacity of the vectors was compared by measuring smooth muscle cell metabolic activity and migration following infection with vectors that over-express the candidate therapeutic gene tissue inhibitor of matrix metalloproteinase-3 (TIMP-3).</p>
<p>Results: Compared to Adenovirus serotype 5 (Ad5), the novel vector Ad5T*F35++ demonstrated improved binding and transduction of human vascular cells. Ad5T*F35++ mediated expression of TIMP-3 reduced smooth muscle cell metabolic activity and migration in vitro. We also demonstrated that in human serum samples pre-existing neutralising antibodies to Ad5T*F35++ were less prevalent than Ad5 neutralising antibodies.</p>
<p>Conclusions: We have developed a novel vector with improved vascular transduction and improved resistance to human serum neutralisation. This may provide a novel vector platform for human vascular gene transfer.</p>
Recommended from our members
Combustion Modeling in Advanced Gas Turbine Systems
Goal of DOE`s Advanced Turbine Systems program is to develop and commercialize ultra-high efficiency, environmentally superior, cost competitive gas turbine systems for base-load applications in utility, independent power producer, and industrial markets. Primary objective of the program here is to develop a comprehensive combustion model for advanced gas turbine combustion systems using natural gas (coal gasification or biomass fuels). The efforts included code evaluation (PCGC-3), coherent anti-Stokes Raman spectroscopy, laser Doppler anemometry, and laser-induced fluorescence
Origin and Evolution of Saturn's Ring System
The origin and long-term evolution of Saturn's rings is still an unsolved
problem in modern planetary science. In this chapter we review the current
state of our knowledge on this long-standing question for the main rings (A,
Cassini Division, B, C), the F Ring, and the diffuse rings (E and G). During
the Voyager era, models of evolutionary processes affecting the rings on long
time scales (erosion, viscous spreading, accretion, ballistic transport, etc.)
had suggested that Saturn's rings are not older than 100 My. In addition,
Saturn's large system of diffuse rings has been thought to be the result of
material loss from one or more of Saturn's satellites. In the Cassini era, high
spatial and spectral resolution data have allowed progress to be made on some
of these questions. Discoveries such as the ''propellers'' in the A ring, the
shape of ring-embedded moonlets, the clumps in the F Ring, and Enceladus' plume
provide new constraints on evolutionary processes in Saturn's rings. At the
same time, advances in numerical simulations over the last 20 years have opened
the way to realistic models of the rings's fine scale structure, and progress
in our understanding of the formation of the Solar System provides a
better-defined historical context in which to understand ring formation. All
these elements have important implications for the origin and long-term
evolution of Saturn's rings. They strengthen the idea that Saturn's rings are
very dynamical and rapidly evolving, while new arguments suggest that the rings
could be older than previously believed, provided that they are regularly
renewed. Key evolutionary processes, timescales and possible scenarios for the
rings's origin are reviewed in the light of tComment: Chapter 17 of the book ''Saturn After Cassini-Huygens'' Saturn from
Cassini-Huygens, Dougherty, M.K.; Esposito, L.W.; Krimigis, S.M. (Ed.) (2009)
537-57
Loop-Mediated Isothermal Amplification Test for Detection of Neisseria gonorrhoeae in Urine Samples and Tolerance of the Assay to the Presence of Urea
A loop-mediated isothermal amplification (LAMP) assay for open reading frame 1 (ORF1) of the glutamine synthetase gene of Neisseria gonorrhoeae was able to tolerate urea concentrations of â€1.8 M, compared with a PCR assay that was functional at concentrations of <100 mM. The LAMP assay was as sensitive as the PCR assay while being faster and simpler to perform
- âŠ