219 research outputs found

    Average of trial peaks versus peak of average profile : impact on change of direction biomechanics

    Get PDF
    The aims of this study were twofold: firstly, to compare lower limb kinematic and kinetic variables during a sprint and 90° cutting task between two averaging methods of obtaining discrete data (peak of average profile vs. average of individual trial peaks); secondly, to determine the effect of averaging methods on participant ranking of each variable within a group. Twenty-two participants, from multiple sports, performed a 90° cut, whereby lower limb kinematics and kinetics were assessed via 3D motion and ground reaction force (GRF) analysis. Six of the eight dependent variables (vertical and horizontal GRF; hip flexor, knee flexor, and knee abduction moments, and knee abduction angle) were significantly greater (p ≤ 0.001, g = 0.10-0.37, 2.74-10.40%) when expressed as an average of trial peaks compared to peak of average profiles. Trivial (g ≤ 0.04) and minimal differences (≤ 0.94%) were observed in peak hip and knee flexion angle between averaging methods. Very strong correlations (ρ ≥ 0.901, p <0.001) were observed for rankings of participants between averaging methods for all variables. Practitioners and researchers should obtain discrete data based on the average of trial peaks because it is not influenced by misalignments and variations in trial peak locations, in contrast to the peak from average profile

    Photonic quantum state transfer between a cold atomic gas and a crystal

    Full text link
    Interfacing fundamentally different quantum systems is key to build future hybrid quantum networks. Such heterogeneous networks offer superior capabilities compared to their homogeneous counterparts as they merge individual advantages of disparate quantum nodes in a single network architecture. However, only very few investigations on optical hybrid-interconnections have been carried out due to the high fundamental and technological challenges, which involve e.g. wavelength and bandwidth matching of the interfacing photons. Here we report the first optical quantum interconnection between two disparate matter quantum systems with photon storage capabilities. We show that a quantum state can be faithfully transferred between a cold atomic ensemble and a rare-earth doped crystal via a single photon at telecommunication wavelength, using cascaded quantum frequency conversion. We first demonstrate that quantum correlations between a photon and a single collective spin excitation in the cold atomic ensemble can be transferred onto the solid-state system. We also show that single-photon time-bin qubits generated in the cold atomic ensemble can be converted, stored and retrieved from the crystal with a conditional qubit fidelity of more than 85%85\%. Our results open prospects to optically connect quantum nodes with different capabilities and represent an important step towards the realization of large-scale hybrid quantum networks

    The Pandora SmallSat: Multiwavelength Characterization of Exoplanets and their Host Stars

    Get PDF
    Pandora is a SmallSat mission concept, selected as part of NASA’s Astrophysics Pioneers Program, designed to study the atmospheres of exoplanets using transmission spectroscopy. Transmission spectroscopy of transiting exoplanets provides our best opportunity to identify the makeup of planetary atmospheres in the coming decade. Stellar brightness variations due to star spots, however, can seep into these measurements and contaminate the observed spectra. Pandora is designed to disentangle star and planet signals in transmission spectra and reliably characterize the planetary atmospheres. Pandora will collect long-duration photometric observations with a visible-light channel, and simultaneous spectra with a near-IR channel, where water is a strong molecular absorber. The broad wavelength coverage will provide constraints on spot covering fractions of the stars and determine the impact of these active regions on the planetary spectra. Pandora will observe at least 20 exoplanets with sizes ranging from Earth-size to Jupiter-size, with host stars spanning mid-K to late-M spectral types. The project is made possible by leveraging investments in other projects, including an all-aluminum 0.45-meter Cassegrain telescope design, and an IR sensor chip assembly from the James Webb Space Telescope. The mission will last five years from initial formulation to closeout, with one-year of science operations. Launch is planned for the mid-2020s as a secondary payload in Sun-synchronous low-Earth orbit. By design, Pandora has a diverse team, with over half of mission leadership roles filled by early career scientists and engineers, demonstrating the high value of SmallSats for developing the next generation of space mission leaders

    Impacts of an Invasive Snail (Tarebia granifera) on Nutrient Cycling in Tropical Streams: The Role of Riparian Deforestation in Trinidad, West Indies

    Get PDF
    Non-native species and habitat degradation are two major catalysts of environmental change and often occur simultaneously. In freshwater systems, degradation of adjacent terrestrial vegetation may facilitate introduced species by altering resource availability. Here we examine how the presence of intact riparian cover influences the impact of an invasive herbivorous snail, Tarebia granifera, on nitrogen (N) cycling in aquatic systems on the island of Trinidad. We quantified snail biomass, growth, and N excretion in locations where riparian vegetation was present or removed to determine how snail demographics and excretion were related to the condition of the riparian zone. In three Neotropical streams, we measured snail biomass and N excretion in open and closed canopy habitats to generate estimates of mass- and area-specific N excretion rates. Snail biomass was 2 to 8 times greater and areal N excretion rates ranged from 3 to 9 times greater in open canopy habitats. Snails foraging in open canopy habitat also had access to more abundant food resources and exhibited greater growth and mass-specific N excretion rates. Estimates of ecosystem N demand indicated that snail N excretion in fully closed, partially closed, and open canopy habitats supplied 2%, 11%, and 16% of integrated ecosystem N demand, respectively. We conclude that human-mediated riparian canopy loss can generate hotspots of snail biomass, growth, and N excretion along tropical stream networks, altering the impacts of an invasive snail on the biogeochemical cycling of N

    Evolution of the Aging Brain Transcriptome and Synaptic Regulation

    Get PDF
    Alzheimer's disease and other neurodegenerative disorders of aging are characterized by clinical and pathological features that are relatively specific to humans. To obtain greater insight into how brain aging has evolved, we compared age-related gene expression changes in the cortex of humans, rhesus macaques, and mice on a genome-wide scale. A small subset of gene expression changes are conserved in all three species, including robust age-dependent upregulation of the neuroprotective gene apolipoprotein D (APOD) and downregulation of the synaptic cAMP signaling gene calcium/calmodulin-dependent protein kinase IV (CAMK4). However, analysis of gene ontology and cell type localization shows that humans and rhesus macaques have diverged from mice due to a dramatic increase in age-dependent repression of neuronal genes. Many of these age-regulated neuronal genes are associated with synaptic function. Notably, genes associated with GABA-ergic inhibitory function are robustly age-downregulated in humans but not in mice at the level of both mRNA and protein. Gene downregulation was not associated with overall neuronal or synaptic loss. Thus, repression of neuronal gene expression is a prominent and recently evolved feature of brain aging in humans and rhesus macaques that may alter neural networks and contribute to age-related cognitive changes

    Gene Regulatory Network Reconstruction Using Bayesian Networks, the Dantzig Selector, the Lasso and Their Meta-Analysis

    Get PDF
    Modern technologies and especially next generation sequencing facilities are giving a cheaper access to genotype and genomic data measured on the same sample at once. This creates an ideal situation for multifactorial experiments designed to infer gene regulatory networks. The fifth “Dialogue for Reverse Engineering Assessments and Methods” (DREAM5) challenges are aimed at assessing methods and associated algorithms devoted to the inference of biological networks. Challenge 3 on “Systems Genetics” proposed to infer causal gene regulatory networks from different genetical genomics data sets. We investigated a wide panel of methods ranging from Bayesian networks to penalised linear regressions to analyse such data, and proposed a simple yet very powerful meta-analysis, which combines these inference methods. We present results of the Challenge as well as more in-depth analysis of predicted networks in terms of structure and reliability. The developed meta-analysis was ranked first among the teams participating in Challenge 3A. It paves the way for future extensions of our inference method and more accurate gene network estimates in the context of genetical genomics

    Diverse Splicing Patterns of Exonized Alu Elements in Human Tissues

    Get PDF
    Exonization of Alu elements is a major mechanism for birth of new exons in primate genomes. Prior analyses of expressed sequence tags show that almost all Alu-derived exons are alternatively spliced, and the vast majority of these exons have low transcript inclusion levels. In this work, we provide genomic and experimental evidence for diverse splicing patterns of exonized Alu elements in human tissues. Using Exon array data of 330 Alu-derived exons in 11 human tissues and detailed RT-PCR analyses of 38 exons, we show that some Alu-derived exons are constitutively spliced in a broad range of human tissues, and some display strong tissue-specific switch in their transcript inclusion levels. Most of such exons are derived from ancient Alu elements in the genome. In SEPN1, mutations of which are linked to a form of congenital muscular dystrophy, the muscle-specific inclusion of an Alu-derived exon may be important for regulating SEPN1 activity in muscle. Realtime qPCR analysis of this SEPN1 exon in macaque and chimpanzee tissues indicates human-specific increase in its transcript inclusion level and muscle specificity after the divergence of humans and chimpanzees. Our results imply that some Alu exonization events may have acquired adaptive benefits during the evolution of primate transcriptomes

    Gender and respiratory findings in workers occupationally exposed to organic aerosols: A meta analysis of 12 cross-sectional studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gender related differences in respiratory disease have been documented. The aim of this study was to investigate gender related differences in respiratory findings by occupation. We analyzed data from 12 of our previously published studies.</p> <p>Methods</p> <p>Three thousand and eleven (3011) workers employed in "organic dust" industries (1379 female and 1632 male) were studied. A control group of 806 workers not exposed to any kind of dust were also investigated (male = 419, female = 387). Acute and chronic respiratory symptoms and lung function were measured. The weighted average method and the Mantel-Haentszel method were used to calculate the odds ratios of symptoms. Hedge's unbiased estimations were used to measure lung function differences between men and women.</p> <p>Results</p> <p>There were high prevalences of acute and chronic respiratory symptoms in all the "dusty" studied groups compared to controls. Significantly less chronic cough, chronic phlegm as well as chronic bronchitis were found among women than among men after the adjustments for smoking, age and duration of employment. Upper respiratory tract symptoms by contrast were more frequent in women than in men in these groups. Significant gender related lung function differences occurred in the textile industry but not in the food processing industry or among farmers.</p> <p>Conclusion</p> <p>The results of this study suggest that in industries processing organic compounds there are gender differences in respiratory symptoms and lung function in exposed workers. Whether these findings represent true physiologic gender differences, gender specific workplace exposures or other undefined gender variables not defined in this study cannot be determined. These data do not suggest that special limitations for women are warranted for respiratory health reasons in these industries, but the issue of upper respiratory irritation and disease warrants further study.</p

    Centralised Design and Production of the Ultra-High Vacuum and Laser-Stabilisation Systems for the AION Ultra-Cold Strontium Laboratories

    Full text link
    This paper outlines the centralised design and production of the Ultra-High-Vacuum sidearm and Laser-Stabilisation systems for the AION Ultra-Cold Strontium Laboratories. Commissioning data on the residual gas and steady-state pressures in the sidearm chambers, on magnetic field quality, on laser stabilisation, and on the loading rate for the 3D Magneto-Optical Trap are presented. Streamlining the design and production of the sidearm and laser stabilisation systems enabled the AION Collaboration to build and equip in parallel five state-of-the-art Ultra-Cold Strontium Laboratories within 24 months by leveraging key expertise in the collaboration. This approach could serve as a model for the development and construction of other cold atom experiments, such as atomic clock experiments and neutral atom quantum computing systems, by establishing dedicated design and production units at national laboratories.Comment: 27 pages, 21 figure
    corecore