6 research outputs found

    Practitioner’s Section: Integrated Resource Efficiency Analysis for Reducing Climate Impacts in the Chemical Industry

    Full text link
    Reducing greenhouse gas emissions of the material-intensive chemical industry requires an integrated analysis and optimization of the complex production systems including raw material and energy use, resulting costs and environmental and climate impacts. To meet this challenge, the research project InReff (Integrated Resource Efficiency Analysis for Reducing Climate Impacts in the Chemical Industry) has been established. It aims at the development of an IT-supported modeling and evaluation framework which is able to comprehensively address issues of resource efficiency and climate change within the chemical industry, e.g. the minimization of material and energy intensity and consequently greenhouse gas emissions, without compromising on production performance. The paper presents background information on resource efficiency and the research project, an ideal-typical decision model for resource efficiency analysis, the conceptual approach for an IT-based integration platform as well as the case study design at the industrial project partners’ sites. These first results are linked to future activities and further research questions are highlighted in the concluding section

    Combined In Vivo Microdialysis and PET Studies to Validate [<sup>11</sup>C]Yohimbine Binding as a Marker of Noradrenaline Release

    No full text
    The noradrenaline system attracts attention for its role in mood disorders and neurodegenerative diseases but the lack of well-validated methods impairs our understanding when assessing its function and release in vivo. This study combines simultaneous positron emission tomography (PET) and microdialysis to explore if [11C]yohimbine, a selective antagonist radioligand of the α2 adrenoceptors, may be used to assess in vivo changes in synaptic noradrenaline during acute pharmacological challenges. Anesthetised Göttingen minipigs were positioned in a head holder in a PET/CT device. Microdialysis probes were placed in the thalamus, striatum and cortex and dialysis samples were collected every 10 min. Three 90 min [11C]yohimbine scans were acquired: at baseline and at two timepoints after the administration of amphetamine (1–10 mg/kg), a non-specific releaser of dopamine and noradrenaline, or nisoxetine (1 mg/kg), a specific noradrenaline transporter inhibitor. [11C]yohimbine volumes of distribution (VT) were obtained using the Logan kinetic model. Both challenges induced a significant decrease in yohimbine VT, with time courses reflecting their different mechanisms of action. Dialysis samples revealed a significant increase in noradrenaline extracellular concentrations after challenge and an inverse correlation with changes in yohimbine VT. These data suggest that [11C]yohimbine can be used to evaluate acute variations in synaptic noradrenaline concentrations after pharmacological challenges

    Reclaiming International Law from Extraterritoriality

    No full text

    Literaturverzeichnis

    No full text

    Literaturverzeichnis

    No full text
    corecore