26 research outputs found

    Object-Oriented Structuring of Finite Elements

    Get PDF

    Foundation of the Øresund Bridge

    Get PDF

    A Modified Critical State Two-surface Plasticity Model for Sand:Theory and Implementation

    Get PDF

    Simple Application of Fictitious Crack Model in Reinforced Concrete Beams

    Get PDF

    Acceleration in perpendicular relativistic shocks for plasmas consisting of leptons and hadrons

    Get PDF
    We investigate the acceleration of light particles in perpendicular shocks for plasmas consisting of a mixture of leptonic and hadronic particles. Starting from the full set of conservation equations for the mixed plasma constituents, we generalize the magneto-hydrodynamical jump conditions for a multi-component plasma, including information about the specific adiabatic constants for the different species. The impact of deviations from the standard model of an ideal gas is compared in theory and particle-in-cell simulations, showing that the standard-MHD model is a good approximation. The simulations of shocks in electron-positron-ion plasmas are for the first time multi-dimensional, transverse effects are small in this configuration and 1D simulations are a good representation if the initial magnetization is chosen high. 1D runs with a mass ratio of 1836 are performed, which identify the Larmor frequency \omega_{ci} as the dominant frequency that determines the shock physics in mixed component plasmas. The maximum energy in the non-thermal tail of the particle spectra evolves in time according to a power-law proportional to t^\alpha with \alpha in the range 1/3 < \alpha < 1, depending on the initial parameters. A connection is made with transport theoretical models by Drury (1983) and Gargate & Spitkovsky (2011), which predict an acceleration time proportional to \gamma and the theory for small wavelength scattering by Kirk & Reville (2010), which predicts a behavior rather as proportional to \gamma^2. Furthermore, we compare different magnetic field orientations with B_0 inside and out of the plane, observing qualitatively different particle spectra than in pure electron-ion shocks

    Magnetic field amplification and electron acceleration to near-energy equipartition with ions by a mildly relativistic quasi-parallel plasma protoshock

    Full text link
    The prompt emissions of gamma-ray bursts are seeded by radiating ultrarelativistic electrons. Internal shocks propagating through a jet launched by a stellar implosion, are expected to amplify the magnetic field & accelerate electrons. We explore the effects of density asymmetry & a quasi-parallel magnetic field on the collision of plasma clouds. A 2D relativistic PIC simulation models the collision of two plasma clouds, in the presence of a quasi-parallel magnetic field. The cloud density ratio is 10. The densities of ions & electrons & the temperature of 131 keV are equal in each cloud. The mass ratio is 250. The peak Lorentz factor of the electrons is determined, along with the orientation & strength of the magnetic field at the cloud collision boundary. The magnetic field component orthogonal to the initial plasma flow direction is amplified to values that exceed those expected from shock compression by over an order of magnitude. The forming shock is quasi-perpendicular due to this amplification, caused by a current sheet which develops in response to the differing deflection of the incoming upstream electrons & ions. The electron deflection implies a charge separation of the upstream electrons & ions; the resulting electric field drags the electrons through the magnetic field, whereupon they acquire a relativistic mass comparable to the ions. We demonstrate how a magnetic field structure resembling the cross section of a flux tube grows in the current sheet of the shock transition layer. Plasma filamentation develops, as well as signatures of orthogonal magnetic field striping. Localized magnetic bubbles form. Energy equipartition between the ion, electron & magnetic energy is obtained at the shock transition layer. The electronic radiation can provide a seed photon population that can be energized by secondary processes (e.g. inverse Compton).Comment: 12 pages, 15 Figures, accepted to A&

    Gamma-Ray Bursts

    Get PDF
    Gamma-ray bursts are the most luminous explosions in the Universe, and their origin and mechanism are the focus of intense research and debate. More than three decades after their discovery, and after pioneering breakthroughs from space and ground experiments, their study is entering a new phase with the recently launched Swift satellite. The interplay between these observations and theoretical models of the prompt gamma ray burst and its afterglow is reviewed.Comment: To appear in Rep. Prog. Phys., 74 pages, 11 figures, uses iopart.cls macros; revisions and updated reference

    Programming in C

    No full text

    Object-Oriented Structuring of the Finite Element Method

    No full text

    A Profile Solver in C for finite Element Equations

    No full text
    corecore