4,935 research outputs found
Surface-protein interactions on different stainless steel grades: effects of protein adsorption, surface changes and metal release
Implantation using stainless steels (SS) is an example where an understanding of protein-induced metal release from SS is important when assessing potential toxicological risks. Here, the protein-induced metal release was investigated for austenitic (AISI 304, 310, and 316L), ferritic (AISI 430), and duplex (AISI 2205) grades in a phosphate buffered saline (PBS, pH 7.4) solution containing either bovine serum albumin (BSA) or lysozyme (LSZ). The results show that both BSA and LSZ induce a significant enrichment of chromium in the surface oxide of all stainless steel grades. Both proteins induced an enhanced extent of released iron, chromium, nickel and manganese, very significant in the case of BSA (up to 40-fold increase), whereas both proteins reduced the corrosion resistance of SS, with the reverse situation for iron metal (reduced corrosion rates and reduced metal release in the presence of proteins). A full monolayer coverage is necessary to induce the effects observed. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10856-013-4859-8) contains supplementary material, which is available to authorized users
Interactions Between the Physiological Environment and Titanium-Based Implant Materials: From Understanding to Control
Titanium and titanium alloys are widely used in different biomedical applications owing to their high biocompatibility, high corrosion resistance, good mechanical properties, and good osseointegration ability. Titanium and its alloys rapidly form a surface oxide layer in air and aqueous environments. This passive and thin (a few nanometers) surface oxide hinders active corrosion and ensures a low metal ion release, enhancing biocompatibility. Compared to that of other biomedical alloys, this surface oxide is exceptionally resistant to chemical attack by halides, primarily chlorides; the presence of fluorides can, in some cases, result in localized corrosion of titanium and its alloys. However, the combination of proteins, inflammatory conditions and bacteria, which for instance generate hydrogen peroxide, can result in a reduction of the corrosion resistance of titanium-based materials. Titanium and its alloying elements, such as aluminum and vanadium, can then be released as ions, which might trigger an immune system response and reduce biocompatibility. Several surface modifications have been proposed in order to improve the bone-bonding ability of titanium and its alloys, facilitate the healing process, and enhance the success of the implant with a decreased risk of micromotions. Moreover, antimicrobial ions/nanoparticles can be added to the surface to reduce the infection risk. Surface modification of titanium (e.g., with artificially grown, micrometer-thick, titanium oxide layers) can significantly increase the corrosion resistance under critical conditions (e.g., inflammatory response and infection); however, the surfaces are not completely inert and the effect of metal ion/nanoparticle release should be carefully taken into account. This chapter reviews and discusses the current strategies for modifying and controlling the surface of titanium-based implant materials, with particular focus on corrosion resistance, bone integration, inflammatory and infection control, and interactions with the physiological environment
Logic, logical form and the disunity of truth
Monists say that the nature of truth is invariant, whichever sentence you consider; pluralists say that the nature of truth varies between different sets of sentences. The orthodoxy is that logic and logical form favour monism: there must be a single property that is preserved in any valid inference; and any truth-functional complex must be true in the same way as its components. The orthodoxy, I argue, is mistaken. Logic and logical form impose only structural constraints on a metaphysics of truth. Monistic theories are not guaranteed to satisfy these constraints, and there is a pluralistic theory that does so
Influence of surface oxide characteristics and speciation on corrosion, electrochemical properties and metal release of atomized 316L stainless steel powders
Surface oxide characteristics of powder particles are important to consider for any toxicological risk assessment based on in-vitro or in-vivo tests. This study focuses on a multi-analytical approach (X-ray photoelectron spectroscopy, Auger electron spectroscopy, scanning- and transmission electron microscopy, and different electrochemical techniques) for in-depth characterization of surface oxides of inert-gas-atomized (GA) AISI 316L stainless steel powder, compared with massive sheet and a water-atomized (WA) 316L powder. Implications of differences in surface oxide phases and their surface distribution on corrosion, electrochemical properties and metal release are systematically discussed. Cr was enriched in an inner surface layer for both GA powders, with Mn and S enriched in the outermost surface oxide. The surface oxide was 2-5 nm thick for both GA powder size fractions, amorphous for the GA powder size
Influence of surface oxide characteristics and speciation on corrosion, electrochemical properties and metal release of atomized 316L stainless steel powders
Surface oxide characteristics of powder particles are important to consider for any toxicological risk assessment based on in-vitro or in-vivo tests. This study focuses on a multi-analytical approach (X-ray photoelectron spectroscopy, Auger electron spectroscopy, scanning- and transmission electron microscopy, and different electrochemical techniques) for in-depth characterization of surface oxides of inert-gas-atomized (GA) AISI 316L stainless steel powder, compared with massive sheet and a water-atomized (WA) 316L powder. Implications of differences in surface oxide phases and their surface distribution on corrosion, electrochemical properties and metal release are systematically discussed. Cr was enriched in an inner surface layer for both GA powders, with Mn and S enriched in the outermost surface oxide. The surface oxide was 2-5 nm thick for both GA powder size fractions, amorphous for the GA powder size
Extension and approximation of -subharmonic functions
Let be a bounded domain, and let be a
real-valued function defined on the whole topological boundary . The aim of this paper is to find a characterization of the functions
which can be extended to the inside to a -subharmonic function under
suitable assumptions on . We shall do so by using a function algebraic
approach with focus on -subharmonic functions defined on compact sets. We
end this note with some remarks on approximation of -subharmonic functions
Expression of cyclin D1, D3, E, and p27 in human renal cell carcinoma analysed by tissue microarray
Aberrations in the GI/S transition of the cell cycle have been observed in many malignancies and seem to be critical in the transformation process. Few studies have delineated the presence of GI/S regulatory defects and their clinical relevance in renal cell carcinoma (RCC). Therefore, we have examined the protein contents of cyclin D 1, D3, E, and p27 in 218 RCCs, using tissue microarray and immunohistochemistry. The results from a subset of tumours were confirmed by Western blotting and immunohistochemical staining of regular tissue sections. Interestingly, low protein contents of cyclin D I and p27 were associated with high nuclear grade, large tumour size, and poor prognosis for patients with conventional tumours. We further observed substantial differences in the pattern of GI/S regulatory defects between the different RCC subtypes. The majority of both conventional and papillary cases expressed p27; however, chromophobe tumours generally lacked p27 staining. In addition, conventional RCCs often expressed high cyclin DI protein levels, while papillary RCCs exhibited high cyclin E. In summary, we have shown that GI/S regulatory defects are present in RCC and are associated with clinico-pathological parameters. The pattern of cell cycle regulatory defects also differed between RCC subtypes. (C) 2003 Cancer Research UK
Skin permeation studies of chromium species – Evaluation of a reconstructed human epidermis model
A reconstructed human epidermis (RHE) model, the EpiDerm, was investigated and compared to human skin ex vivo regarding tissue penetration and distribution of two chromium species, relevant in both occupational and general exposure in the population. Imaging mass spectrometry was used in analysis of the sectioned tissue. The RHE model gave similar results compared to human skin ex vivo for skin penetration of CrVI. However, the penetration of CrIII into the tissue of the RHE model compared to human skin ex vivo differed markedly, such that in the RHE model the CrIII species accumulated in the tissue layer corresponding to stratum corneum whereas in human skin ex vivo, the CrIII species penetrated evenly through the skin tissue. Further, skin lipids such as cholesterol were less abundant in the RHE model compared to the human skin tissue. Results presented here indicate that the RHE models do not possess the same fundamental properties as human skin tissue. As the RHE models appear to be able to give false negative results, experiments using RHE models for the study of skin penetration should be evaluated with caution
NF-κB perturbation reveals unique immunomodulatory functions in Prx1 + Fibroblasts that Promote Development of Atopic Dermatitis
Skin is composed of diverse cell populations that cooperatively maintain homeostasis. Up-regulation of the nuclear factor кB (NF-кB) pathway may lead to the development of chronic inflammatory disorders of the skin, but its role during the early events remains unclear. Through analysis of single-cell RNA sequencing data via iterative random forest leave one out prediction, an explainable artificial intelligence method, we identified an immunoregulatory role for a unique paired related homeobox-1 (Prx1)+ fibroblast subpopulation. Disruption of Ikkb-NF-кB under homeostatic conditions in these fibroblasts paradoxically induced skin inflammation due to the overexpression of C-C motif chemokine ligand 11 (CCL11; or eotaxin-1) characterized by eosinophil infiltration and a subsequent TH2 immune response. Because the inflammatory phenotype resembled that seen in human atopic dermatitis (AD), we examined human AD skin samples and found that human AD fibroblasts also overexpressed CCL11 and that perturbation of Ikkb-NF-кB in primary human dermal fibroblasts up-regulated CCL11. Monoclonal antibody treatment against CCL11 was effective in reducing the eosinophilia and TH2 inflammation in a mouse model. Together, the murine model and human AD specimens point to dysregulated Prx1+ fibroblasts as a previously unrecognized etiologic factor that may contribute to the pathogenesis of AD and suggest that targeting CCL11 may be a way to treat AD-like skin lesions. © 2022 The Authors, some rights reserve
Steroid hormone receptors ERα and PR characterised by immunohistochemistry in the mare adrenal gland
- …