50 research outputs found

    Global Spatial Risk Assessment of Sharks Under the Footprint of Fisheries

    Get PDF
    Effective ocean management and conservation of highly migratory species depends on resolving overlap between animal movements and distributions and fishing effort. Yet, this information is lacking at a global scale. Here we show, using a big-data approach combining satellite-tracked movements of pelagic sharks and global fishing fleets, that 24% of the mean monthly space used by sharks falls under the footprint of pelagic longline fisheries. Space use hotspots of commercially valuable sharks and of internationally protected species had the highest overlap with longlines (up to 76% and 64%, respectively) and were also associated with significant increases in fishing effort. We conclude that pelagic sharks have limited spatial refuge from current levels of high-seas fishing effort. Results demonstrate an urgent need for conservation and management measures at high-seas shark hotspots and highlight the potential of simultaneous satellite surveillance of megafauna and fishers as a tool for near-real time, dynamic management

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Reply to: Caution over the use of ecological big data for conservation

    No full text
    [Extract] Our global analysis1 estimated the overlap and fishing exposure risk (FEI) using the space use of satellite-tracked sharks and longline fishing effort monitored by the automatic identification system (AIS). In the accompanying Comment, Harry and Braccini2 draw attention to two localized shark–longline vessel overlap hotspots in Australian waters, stating that 47 fishing vessels were misclassified as longline and purse seine vessels in the Global Fishing Watch (GFW)3 2012–2016 AIS fishing effort data product that we used. This, they propose2, results in misidentifications that highlight fishing exposure hotspots that are subject to an unexpected level of sensitivity in the analysis and they suggest that misidentifications could broadly affect the calculations of fishing exposure and the central conclusions of our study1. We acknowledged in our previously published paper1 that gear reclassifications were likely to occur for a small percentage of the more than 70,000 vessels studied, however, here we demonstrate that even using much larger numbers of vessel reclassifications than those proposed by Harry and Braccini2, the central results and conclusions of our paper1 do not change

    Reply to: Shark mortality cannot be assessed by fishery overlap alone

    No full text
    [Extract] Our previously published paper1 provided global fine-scale spatiotemporal estimates (1° × 1°; monthly) of overlap and fishing exposure risk (FEI) between satellite-tracked shark space use and automatic identification system (AIS) longline fishing effort. We did not assess shark mortality directly, but in addition to replying to the Comment by Murua et al.2, we confirm—using regression analysis of spatially matched data—that fishing-induced pelagic shark mortality (catch per unit effort (CPUE)) is greater where FEI is higher. We focused on assessing shark horizontal spatiotemporal overlap and exposure risk with fisheries because spatial overlap is a major driver of fishing capture susceptibility and previous shark ecological risk assessments (ERAs) assumed a homogenous shark density within species-range distributions3,4,5 or used coarse-scale modelled occurrence data, rather than more ecologically realistic risk estimates in heterogeneous habitats that were selected by sharks over time. Furthermore, our shark spatial exposure risk implicitly accounts for other susceptibility factors with equal or similar probabilities to those commonly used in shark ERAs3,5

    Patient-Level Pooled Analysis of Ultrasound Renal Denervation in the Sham-Controlled RADIANCE II, RADIANCE-HTN SOLO, and RADIANCE-HTN TRIO Trials

    No full text
    corecore