7 research outputs found
Industrial or traditional bamboo construction? Comparative life cycle assessment (LCA) of bamboo-based buildings
© 2018 by the authors. The past five decades have witnessed an unprecedented growth in population. This has led to an ever-growing housing demand. It has been proposed that the use of bio-based materials, and specifically bamboo, can help alleviate the housing demand in a sustainable manner. The present paper aims to assess the environmental impact caused by using four different construction materials (bamboo, brick, concrete hollow block, and engineered bamboo) in buildings. A comparative life cycle assessment (LCA) was carried out to measure the environmental impact of the different construction materials in the construction of single and multi-storey buildings. The LCA considered the extraction, production, transport, and use of the construction materials. The IPCC2013 evaluation method from the Intergovernmental Panel on Climate Change IPCC2013 was used for the calculations of CO2 emissions. The assessment was geographically located in Colombia, South America, and estimates the transport distances of the construction materials. The results show that transportation and reinforcing materials significantly contribute to the environmental impact, whereas the engineered bamboo construction system has the lowest environmental impact. The adoption of bamboo-based construction systems has a significant potential to support the regenerative development of regions where they could be used and might lead to long-lasting improvements to economies, environments, and livelihoods
Bamboo construction inspired by vernacular techniques for reducing carbon footprint: A Life Cycle Assessment (LCA)
Whilst upcoming innovations on digital technology and renewable energy can have a significant impact on the reduction of operational carbon emissions in the construction industry, readily available fast-growing building materials like bamboo are already proving reductions in the embodied carbon of dwellings above 60% when compared to traditional brickwork in Colombia. This paper presents a like-by-like comparison of the environmental impact of a conventional clay brick house (CBH) and a bamboo house for social housing in Colombia, which was built using adapted vernacular technologies. The bamboo house uses bamboo species Guadua angustifolia Kunth as the main structural support for the light cement bamboo frame (LCBF) system, a.k.a. ‘cemented bahareque’, whilst the CBH combines clay bricks and steel for the load-bearing walls. Traditionally built Guadua angustifolia Kunth bahareque (GaKB) houses are a key part of the vernacular architecture in the ‘coffee cultural landscape of Colombia’ (CCLC) recognised by UNESCO. A life cycle assessment (LCA) was performed to calculate the carbon footprint of the houses following four phases: (1) definition of objective and scope; (2) inventory analysis; (3) impact assessment; and (4) interpretation of results. The results show that the carbon footprint of the GaKB house accounts for about 40% of the CBH, i.e., the GaKB generates a carbon footprint of 107.17 CO2-eq/m2 whilst the CBH results in a carbon footprint of 298.44 kg CO2-eq/m2. Furthermore, from a carbon balance calculation, the carbon footprint of the GaKB house is further reduced to about 36% of the CSB house. LCA results for the built GaKB house demonstrate that vernacular housing projects that preserve cultural heritage can also be resilient and climate-neutral. This paper sets a precedent for the establishment of targeted government policies and industry practices that preserve the cultural heritage and vernacular technologies in the CCLC region and in other emergent economies worldwide whilst promoting future-proof and net-zero carbon construction
Elastic response of cross-laminated engineered bamboo panels subjected to in-plane loading
© ICE Publishing: All rights reserved. Novel cross-laminated bamboo panels comprising three and five layers (G-XLam3 and G-XLam5) were tested in compression along the main (0°) and the transverse (90°) directions. Linear variable differential transformer (LVDT) and non-contact three-dimensional digital image correlation (DIC) measuring techniques were used separately to measure deformation in the elastic region, and the elastic moduli, Ep C,0 and Ep C,90, were derived. Mean elastic modulus values obtained using LVDTs exhibited a good match with analytically predicted values. In contrast, the elastic values obtained by the DIC method were considerably higher and presented a considerable scatter of results. For instance, the Ep C,0 for G-XLam3 and G-XLam5 panels were 17·22 and 15·67 GPa, and 14·86 and 12·48 GPa, using the DIC and LVDT methods, respectively. In general, G-XLam panels with a fifth of the cross-sectional thickness and twice the density of analogous cross-laminated timber exhibited an approximately two-fold increase in Ep C,0 and Ep C,90. Overall, this research provides guidelines for the assessment and standardisation of the testing procedures for similar engineered bamboo products using contact and non-contact methods and highlights the potential of using G-XLam panels in stiffness-driven applications and in combination with wood for structural purposes
Bamboo reinforced concrete: a critical review
© 2018, The Author(s). The use of small diameter whole-culm (bars) and/or split bamboo (a.k.a. splints or round strips) has often been proposed as an alternative to relatively expensive reinforcing steel in reinforced concrete. The motivation for such replacement is typically cost—bamboo is readily available in many tropical and sub-tropical locations, whereas steel reinforcement is relatively more expensive—and more recently, the drive to find more sustainable alternatives in the construction industry. This review addresses such ‘bamboo-reinforced concrete’ and assesses its structural and environmental performance as an alternative to steel reinforced concrete. A prototype three bay portal frame, that would not be uncommon in regions of the world where bamboo-reinforced concrete may be considered, is used to illustrate bamboo reinforced concrete design and as a basis for a life cycle assessment of the same. The authors conclude that, although bamboo is a material with extraordinary mechanical properties, its use in bamboo-reinforced concrete is an ill-considered concept, having significant durability, strength and stiffness issues, and does not meet the environmentally friendly credentials often attributed to it
Low carbon construction using Guadua bamboo in Colombia
Guadua Angustifolia Kunth (Guadua) is a tropical species of bamboo endemic to South and Central America and widely used as a mainstream material for construction in Colombia. Its rapid rate of biomass production, renewability, high level of CO2 fixation and storage, wide diameter, long-length, and durability are distinctive and highly desirable features which can benefit the new built environment.Research interest in Guadua construction increased significantly after many Guadua-constructed buildings withstood or suffered only minor damage during an earthquake which reached 6.2 on the Richter scale in 1999, resulting in the standardization of Guadua in the seismic-resistant Colombian code (NSR, 2010). However, Guadua buildings constructed in the Americas and other parts of the world, whilst considered to be sustainable, are not fully characterised in terms of the preparation, use and disposal of Guadua. Furthermore, workability, building durability and the construction process have not been specifically documented and evaluated.The structure, properties and availability of Guadua are described in this paper. A case study on a recently built holiday house is presented illustrating the architectural, structural, environmental and technical performance of a Guadua building. This paper presents the construction process, discusses difficulties encountered during the building life cycle and highlights the need for similar assessments.It is concluded that with the aim of achieving a low carbon construction system using Guadua bamboo, challenges regarding manufacture, bio-deterioration, integration with conventional systems, and environmental impacts must be addressed
Engineered bamboo and bamboo engineering
This Research Summary is based on an international symposium titled Bamboo in the Urban Environment, which took place at the University of Pittsburgh in May 2016. The event was funded by the US State Department Global Innovation Institute. Participation was by invitation only, and there were 40 delegates from 14 countries. This Research Summary focuses on topics related to: • product development • material testing and characterisation • testing of connections, and • end products. The authors of this Research Summary, David Trujillo and Héctor F Archila, have selected this symposium as an appropriate reflection of state-of-the-art structural bamboo research. However, the size and nature of the event does not signify that the presentations encompass all bamboo research. This Research Summary highlights research and development work that we believe will be of interest to TRADA members, and provides an insight into future developments for the timber industry – a ‘crystal ball gaze’ into the future. The views expressed here, however, are not necessarily those of Exova BM TRADA. The information presented summarises work undertaken by others and readers are encouraged to contact the authors directly if further clarification on any of the subjects discussed is sough