6,567 research outputs found
Quantum integrable systems and representations of Lie algebras
In this paper the quantum integrals of the Hamiltonian of the quantum
many-body problem with the interaction potential K/sinh^2(x) (Sutherland
operator) are constructed as images of higher Casimirs of the Lie algebra gl(N)
under a certain homomorphism from the center of U(gl(N)) to the algebra of
differential operators in N variables. A similar construction applied to the
affine gl(N) at the critical level k=-N defines a correspondence between higher
Sugawara operators and quantum integrals of the Hamiltonian of the quantum
many-body problem with the potential equal to constant times the Weierstrass
function. This allows one to give a new proof of the Olshanetsky-Perelomov
theorem stating that this Hamiltonian defines a completely integrable quantum
system. We also give a new expression for eigenfunctions of the quantum
integrals of the Sutherland operator as traces of intertwining operators
between certain representations of gl(N).Comment: 17 pages, no figure
MCMC with Strings and Branes: The Suburban Algorithm (Extended Version)
Motivated by the physics of strings and branes, we develop a class of Markov
chain Monte Carlo (MCMC) algorithms involving extended objects. Starting from a
collection of parallel Metropolis-Hastings (MH) samplers, we place them on an
auxiliary grid, and couple them together via nearest neighbor interactions.
This leads to a class of "suburban samplers" (i.e., spread out Metropolis).
Coupling the samplers in this way modifies the mixing rate and speed of
convergence for the Markov chain, and can in many cases allow a sampler to more
easily overcome free energy barriers in a target distribution. We test these
general theoretical considerations by performing several numerical experiments.
For suburban samplers with a fluctuating grid topology, performance is strongly
correlated with the average number of neighbors. Increasing the average number
of neighbors above zero initially leads to an increase in performance, though
there is a critical connectivity with effective dimension d_eff ~ 1, above
which "groupthink" takes over, and the performance of the sampler declines.Comment: v2: 55 pages, 13 figures, references and clarifications added.
Published version. This article is an extended version of "MCMC with Strings
and Branes: The Suburban Algorithm
Extended trigonometric Cherednik algebras and nonstationary Schr\"odinger equations with delta-potentials
We realize an extended version of the trigonometric Cherednik algebra as
affine Dunkl operators involving Heaviside functions. We use the quadratic
Casimir element of the extended trigonometric Cherednik algebra to define an
explicit nonstationary Schr\"odinger equation with delta-potential. We use
coordinate Bethe ansatz methods to construct solutions of the nonstationary
Schr\"odinger equation in terms of generalized Bethe wave functions. It is
shown that the generalized Bethe wave functions satisfy affine difference
Knizhnik-Zamolodchikov equations in their spectral parameter. The relation to
the vector valued root system analogs of the quantum Bose gas on the circle
with pairwise delta-function interactions is indicated.Comment: 23 pages; Version 2: expanded introduction and misprints correcte
Separate ways: The Mass-Metallicity Relation does not strongly correlate with Star Formation Rate in SDSS-IV MaNGA galaxies
We present the integrated stellar mass-metallicity relation (MZR) for more
than 1700 galaxies included in the integral field area SDSS-IV MaNGA survey.
The spatially resolved data allow us to determine the metallicity at the same
physical scale (effective radius in arcsecs, ) using a
heterogeneous set of ten abundance calibrators. Besides scale factors, the
shape of the MZR is similar for all calibrators, consistent with those reported
previously using single-fiber and integral field spectroscopy. We compare the
residuals of this relation against the star formation rate (SFR) and specific
SFR (sSFR). We do not find a strong secondary relation of the MZR with either
SFR or the sSFR for any of the calibrators, in contrast with previous
single-fiber spectroscopic studies. Our results agree with an scenario in which
metal enrichment happens at local scales, with global outflows playing a
secondary role in shaping the chemistry of galaxies and cold-gas inflows
regulating the stellar formation.Comment: 10 pages, 9 Figures. Accepted for publication in Ap
Local Starbursts in a Cosmological Context
In this contribution I introduce some of the major issues that motivate the
conference, with an emphasis on how starbursts fit into the ``big picture''. I
begin by defining starbursts in several different ways, and discuss the merits
and limitations of these definitions. I will argue that the most physically
useful definition of a starburst is its ``intensity'' (star formation rate per
unit area). This is the most natural parameter to compare local starbursts with
physically similar galaxies at high redshift, and indeed I will argue that
local starbursts are unique laboratories to study the processes at work in the
early universe. I will describe how NASA's GALEX mission has uncovered a rare
population of close analogs to Lyman Break Galaxies in the local universe. I
will then compare local starbursts to the Lyman-Break and sub-mm galaxies high
redshift populations, and speculate that the multidimensional ``manifold'' of
starbursts near and far can be understood largely in terms of the
Schmidt/Kennicutt law and galaxy mass-metallicity relation. I will briefly
summarize he properties of starburst-driven galactic superwinds and their
possible implications for the evolution of galaxies and the IGM. These complex
multiphase flows are best studied in nearby starbursts, where we can study the
the hot X-ray gas that contains the bulk of the energy and newly produced
metals.Comment: Proceedings of the Conference "Starbursts: Fropm 30 Doradus to Lyman
Break Galaxies
Active Galactic Nuclei in Void Regions
We present a comprehensive study of accretion activity in the most underdense
environments in the universe, the voids, based on the SDSS DR2 data. Based on
investigations of multiple void regions, we show that AGN's occurrence rate and
properties differ from those in walls. AGN are more common in voids than in
walls, but only among moderately luminous and massive galaxies (M_r < -20, log
M_*/M_sun < 10.5), and this enhancement is more pronounced for the weakly
accreting systems (i.e., L_[O III] < 10^39 erg/s). Void AGN hosted by
moderately massive and luminous galaxies are accreting at equal or lower rates
than their wall counterparts, show less obscuration than in walls, and
similarly aged stellar populations. The very few void AGN in massive bright
hosts accrete more strongly, are more obscured, and are associated with younger
stellar emission than wall AGN. Thus, accretion strength is probably connected
to the availability of fuel supply, and accretion and star-formation co-evolve
and rely on the same source of fuel. Nearest neighbor statistics indicate that
the weak accretion activity (LINER-like) is not influenced by the local
environment. However, H IIs, Seyferts, and Transition objects prefer more
grouped small scale structures, indicating that the rate at which galaxies
interact with each other affects their activity. These trends support a
potential H II -> Seyfert/Transition Object -> LINER evolutionary sequence that
we show is apparent in many properties of actively line-emitting galaxies, in
both voids and walls. The subtle differences between void and wall AGN might be
explained by a longer, less disturbed duty cycle of these systems in voids.Comment: 19 pages, 7 figures (1 color); to appear in ApJ, submitted on May 11,
200
Uncovering Spiral Structure in Flocculent Galaxies
We present K'(2.1 micron) observations of four nearby flocculent spirals,
which clearly show low-level spiral structure and suggest that kiloparsec-scale
spiral structure is more prevalent in flocculent spirals than previously
supposed. In particular, the prototypical flocculent spiral NGC 5055 is shown
to have regular, two-arm spiral structure to a radius of 4 kpc in the near
infrared, with an arm-interarm contrast of 1.3. The spiral structure in all
four galaxies is weaker than that in grand design galaxies. Taken in unbarred
galaxies with no large, nearby companions, these data are consistent with the
modal theory of spiral density waves, which maintains that density waves are
intrinsic to the disk. As an alternative, mechanisms for driving spiral
structure with non-axisymmetric perturbers are also discussed. These
observations highlight the importance of near infrared imaging for exploring
the range of physical environments in which large-scale dynamical processes,
such as density waves, are important.Comment: 12 pages AASTeX; 3 compressed PS figures can be retrieved from
ftp://ftp.astro.umd.edu/pub/michele as file thornley.tar (1.6Mbytes).
Accepted to Ap.J. Letters.(Figures now also available here, and from
ftp://ftp.astro.umd.edu/pub/michele , in GIF format.
- …