23 research outputs found

    Pacing the heart:one site fits all?

    Get PDF
    In a healthy heart, contraction/pumping is controlled by an electrical stimulus. This ensures that the heart contracts synchronously. When a problem arises with generating or conducting this electrical stimulus, people are fitted with a pacemaker. Our research shows that - in contrast to current technology - stimulating the ventricular septum is safer and better for the pump function. Stimulation of the ventricular septum can prevent (symptoms of) heart failure. Survival also improves

    Novel bradycardia pacing strategies

    Get PDF
    Contains fulltext : 229186.pdf (Publisher’s version ) (Closed access)The adverse effects of ventricular dyssynchrony induced by right ventricular (RV) pacing has led to alternative pacing strategies, such as biventricular, His bundle (HBP), LV septal (LVSP) and left bundle branch pacing (LBBP). Given the overlap, LVSP and LBBP are also collectively referred to as left bundle branch area pacing (LBBAP). Although among these alternative pacing sites HBP is theoretically the ideal strategy as it maintains a physiological ventricular activation, its application requires more skills and is associated with the most complications. LBBAP, where the ventricular pacing lead is advanced through the interventricular septum to its left side, creates ventricular activation that is only slightly more dyssynchronous. Preliminary studies have shown that LBBAP is feasible, safe and encounters less limitations than HBP. Further studies are needed to differentiate between LVSP and LBBP with regard to acute functional and long-term clinical outcome

    Comparing Ventricular Synchrony in Left Bundle Branch and Left Ventricular Septal Pacing in Pacemaker Patients

    Get PDF
    Background: Left bundle branch area pacing (LBBAP) has recently been introduced as a novel physiological pacing strategy. Within LBBAP, distinction is made between left bundle branch pacing (LBBP) and left ventricular septal pacing (LVSP, no left bundle capture). Objective: To investigate acute electrophysiological effects of LBBP and LVSP as compared to intrinsic ventricular conduction. Methods: Fifty patients with normal cardiac function and pacemaker indication for bradycardia underwent LBBAP. Electrocardiography (ECG) characteristics were evaluated during pacing at various depths within the septum: starting at the right ventricular (RV) side of the septum: the last position with QS morphology, the first position with r' morphology, LVSP and-in patients where left bundle branch (LBB) capture was achieved-LBBP. From the ECG's QRS duration and QRS morphology in lead V1, the stimulus- left ventricular activation time left ventricular activation time (LVAT) interval were measured. After conversion of the ECG into vectorcardiogram (VCG) (Kors conversion matrix), QRS area and QRS vector in transverse plane (Azimuth) were determined. Results: QRS area significantly decreased from 82 +/- 29 mu Vs during RV septal pacing (RVSP) to 46 +/- 12 mu Vs during LVSP. In the subgroup where LBB capture was achieved (n = 31), QRS area significantly decreased from 46 +/- 17 mu Vs during LVSP to 38 +/- 15 mu Vs during LBBP, while LVAT was not significantly different between LVSP and LBBP. In patients with normal ventricular activation and narrow QRS, QRS area during LBBP was not significantly different from that during intrinsic activation (37 +/- 16 vs. 35 +/- 19 mu Vs, respectively). The Azimuth significantly changed from RVSP (-46 +/- 33 degrees) to LVSP (19 +/- 16 degrees) and LBBP (-22 +/- 14 degrees). The Azimuth during both LVSP and LBBP were not significantly different from normal ventricular activation. QRS area and LVAT correlated moderately (Spearman's R = 0.58). Conclusions: ECG and VCG indices demonstrate that both LVSP and LBBP improve ventricular dyssynchrony considerably as compared to RVSP, to values close to normal ventricular activation. LBBP seems to result in a small, but significant, improvement in ventricular synchrony as compared to LVSP

    Vitamin K Antagonists, Non-Vitamin K Antagonist Oral Anticoagulants, and Vascular Calcification in Patients with Atrial Fibrillation

    Get PDF
    Background  Vitamin K antagonists (VKAs) are associated with coronary artery calcification in low-risk populations, but their effect on calcification of large arteries remains uncertain. The effect of non-vitamin K antagonist oral anticoagulants (NOACs) on vascular calcification is unknown. We investigated the influence of use of VKA and NOAC on calcification of the aorta and aortic valve. Methods  In patients with atrial fibrillation without a history of major adverse cardiac or cerebrovascular events who underwent computed tomographic angiography, the presence of ascending aorta calcification (AsAC), descending aorta calcification (DAC), and aortic valve calcification (AVC) was determined. Confounders for VKA/NOAC treatment were identified and propensity score adjusted logistic regression explored the association between treatment and calcification (Agatston score > 0). AsAC, DAC, and AVC differences were assessed in propensity score-matched groups. Results  Of 236 patients (33% female, age: 58 ± 9 years), 71 (30%) used VKA (median duration: 122 weeks) and 79 (34%) used NOAC (median duration: 16 weeks). Propensity score-adjusted logistic regression revealed that use of VKA was significantly associated with AsAC (odds ratio [OR]: 2.31; 95% confidence interval [CI]: 1.16-4.59; p  = 0.017) and DAC (OR: 2.38; 95% CI: 1.22-4.67; p  = 0.012) and a trend in AVC (OR: 1.92; 95% CI: 0.98-3.80; p  = 0.059) compared with non-anticoagulation. This association was absent in NOAC versus non-anticoagulant (AsAC OR: 0.51; 95% CI: 0.21-1.21; p  = 0.127; DAC OR: 0.80; 95% CI: 0.36-1.76; p  = 0.577; AVC OR: 0.62; 95% CI: 0.27-1.40; p  = 0.248). A total of 178 patients were propensity score matched in three pairwise comparisons. Again, use of VKA was associated with DAC ( p  = 0.043) and a trend toward more AsAC ( p  = 0.059), while use of NOAC was not (AsAC p  = 0.264; DAC p  = 0.154; AVC p  = 0.280). Conclusion  This cross-sectional study shows that use of VKA seems to contribute to vascular calcification. The calcification effect was not observed in NOAC users

    Left Ventricular Myocardial Septal Pacing in Close Proximity to LBB Does Not Prolong the Duration of the Left Ventricular Lateral Wall Depolarization Compared to LBB Pacing

    Get PDF
    Background: Three different ventricular capture types are observed during left bundle branch pacing (LBBp). They are selective LBB pacing (sLBBp), non-selective LBB pacing (nsLBBp), and myocardial left septal pacing transiting from nsLBBp while decreasing the pacing output (LVSP). Study aimed to compare differences in ventricular depolarization between these captures using ultra-high-frequency electrocardiography (UHF-ECG). Methods: Using decremental pacing voltage output, we identified and studied nsLBBp, sLBBp, and LVSP in patients with bradycardia. Timing of ventricular activations in precordial leads was displayed using UHF-ECGs, and electrical dyssynchrony (e-DYS) was calculated as the difference between the first and last activation. The durations of local depolarizations (Vd) were determined as the width of the UHF-QRS complex at 50% of its amplitude. Results: In 57 consecutive patients, data were collected during nsLBBp (n = 57), LVSP (n = 34), and sLBBp (n = 23). Interventricular dyssynchrony (e-DYS) was significantly lower during LVSP 16 ms (21; 11), than nsLBBp 24 ms (28; 20) and sLBBp 31 ms (36; 25). LVSP had the same V1d-V8d as nsLBBp and sLBBp except for V3d, which during LVSP was shorter than sLBBp; the mean difference 9 ms (16; 1), p = 0.01. LVSP caused less interventricular dyssynchrony and the same or better local depolarization durations than nsLBBp and sLBBp irrespective of QRS morphology during spontaneous rhythm or paced QRS axis. Conclusions: In patients with bradycardia, LVSP in close proximity to LBB resulted in better interventricular synchrony than nsLBBp and sLBBp and did not significantly prolong depolarization of the left ventricular lateral wall

    Comparing Ventricular Synchrony in Left Bundle Branch and Left Ventricular Septal Pacing in Pacemaker Patients

    No full text
    Background: Left bundle branch area pacing (LBBAP) has recently been introduced as a novel physiological pacing strategy. Within LBBAP, distinction is made between left bundle branch pacing (LBBP) and left ventricular septal pacing (LVSP, no left bundle capture). Objective: To investigate acute electrophysiological effects of LBBP and LVSP as compared to intrinsic ventricular conduction. Methods: Fifty patients with normal cardiac function and pacemaker indication for bradycardia underwent LBBAP. Electrocardiography (ECG) characteristics were evaluated during pacing at various depths within the septum: starting at the right ventricular (RV) side of the septum: the last position with QS morphology, the first position with r’ morphology, LVSP and—in patients where left bundle branch (LBB) capture was achieved—LBBP. From the ECG’s QRS duration and QRS morphology in lead V1, the stimulus- left ventricular activation time left ventricular activation time (LVAT) interval were measured. After conversion of the ECG into vectorcardiogram (VCG) (Kors conversion matrix), QRS area and QRS vector in transverse plane (Azimuth) were determined. Results: QRS area significantly decreased from 82 ± 29 µVs during RV septal pacing (RVSP) to 46 ± 12 µVs during LVSP. In the subgroup where LBB capture was achieved (n = 31), QRS area significantly decreased from 46 ± 17 µVs during LVSP to 38 ± 15 µVs during LBBP, while LVAT was not significantly different between LVSP and LBBP. In patients with normal ventricular activation and narrow QRS, QRS area during LBBP was not significantly different from that during intrinsic activation (37 ± 16 vs. 35 ± 19 µVs, respectively). The Azimuth significantly changed from RVSP (−46 ± 33°) to LVSP (19 ± 16°) and LBBP (−22 ± 14°). The Azimuth during both LVSP and LBBP were not significantly different from normal ventricular activation. QRS area and LVAT correlated moderately (Spearman’s R = 0.58). Conclusions: ECG and VCG indices demonstrate that both LVSP and LBBP improve ventricular dyssynchrony considerably as compared to RVSP, to values close to normal ventricular activation. LBBP seems to result in a small, but significant, improvement in ventricular synchrony as compared to LVSP
    corecore